Digital Signal Processing - Chapter 5

The Fourier Transform

Prof. Yasser Mostafa Kadah

Fourier Transform Definition

$$x(t) \Leftrightarrow X(\Omega)$$

where the signal x(t) is transformed into a function $X(\Omega)$ in the frequency domain by the

Fourier transform:
$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

while $X(\Omega)$ is transformed into a signal x(t) in the time domain by the

Inverse Fourier transform:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega)e^{j\Omega t} d\Omega$$

Fourier Transforms from Laplace Transforms

• If the region of convergence (ROC) of the Laplace transform X(s) contains the $j\Omega$ axis, so that X(s) can be defined for s=D $j\Omega$, then:

$$\mathcal{F}[x(t)] = \mathcal{L}[x(t)]|_{s=j\Omega} = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$
$$= X(s)|_{s=j\Omega}$$

Table 5.2 Fourier Transform Pairs

	Function of Time	Function of Ω
1	$\delta(t)$	1
2	$\delta(t-\tau)$	$e^{-j\Omega\tau}$
3	u(t)	$\frac{1}{i\Omega} + \pi \delta(\Omega)$
4	u(-t)	$\frac{-1}{i\Omega} + \pi \delta(\Omega)$
5	sgn(t) = 2[u(t) - 0.5]	$\frac{2}{i\Omega}$
6	$A, -\infty < t < \infty$	$2\pi A\delta(\Omega)$
7	$Ae^{-at}u(t), \ a>0$	$\frac{A}{j\Omega+a}$
8	$Ate^{-at}u(t), \ a>0$	$\frac{A}{(j\Omega+a)^2}$
9	$e^{-a t }, \ a > 0$	$\frac{2a}{a^2+\Omega^2}$
10	$\cos(\Omega_0 t), -\infty < t < \infty$	$\pi \left[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0) \right]$
11	$\sin(\Omega_0 t), -\infty < t < \infty$	$-j\pi \left[\delta(\Omega - \Omega_0) - \delta(\Omega + \Omega_0)\right]$
12	$A[u(t+\tau)-u(t-\tau)],\ \tau>0$	$2A\tau \frac{\sin(\Omega\tau)}{\Omega\tau}$
13	$\frac{\sin(\Omega_0 t)}{\pi t}$	$u(\Omega+\Omega_0)-u(\Omega-\Omega_0)$
14	$x(t)\cos(\Omega_0 t)$	$0.5[X(\Omega - \Omega_0) + X(\Omega + \Omega_0)]$

Linearity

- Fourier transform is a linear operator
- Superposition holds

If $\mathcal{F}[x(t)] = X(\Omega)$ and $\mathcal{F}[y(t)] = Y(\Omega)$, for constants α and β , we have that

$$\mathcal{F}[\alpha x(t) + \beta y(t)] = \alpha \mathcal{F}[x(t)] + \beta \mathcal{F}[y(t)]$$

$$= \alpha X(\Omega) + \beta Y(\Omega)$$

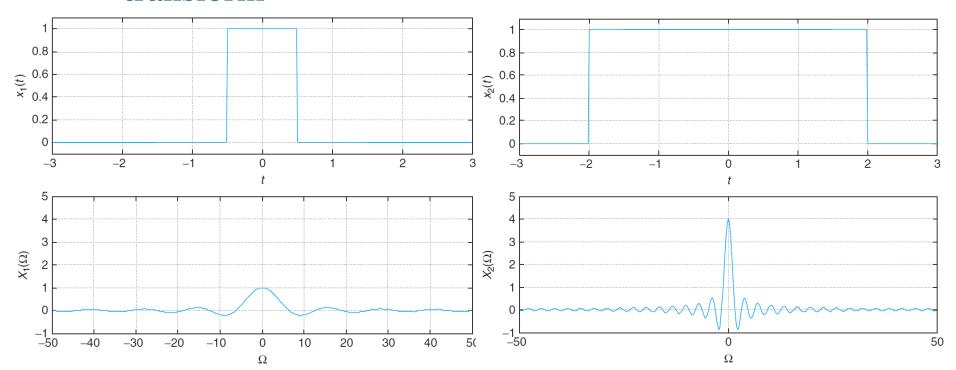
Inverse Proportionality of Time and Frequency

- Support of $X(\Omega)$ is inversely proportional to support of x(t)
- If x(t) has a Fourier transform $X(\Omega)$ and $\alpha \neq 0$ is a real number, then $x(\alpha t)$ is:
 - Contracted $(\alpha > 1)$,
 - Contracted and reflected ($\alpha < -1$),
 - Expanded $(0 < \alpha < 1)$,
 - Expanded and reflected $(-1 < \alpha < 0)$, or
 - Simply reflected ($\alpha = -1$)
- Then,

$$x(\alpha t) \Leftrightarrow \frac{1}{|\alpha|} X\left(\frac{\Omega}{\alpha}\right)$$

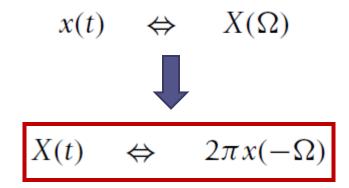
Inverse Proportionality of Time and Frequency - Example

- Fourier transform of 2 pulses of different width
 - 4-times wider pulse have 4-times narrower Fourier transform

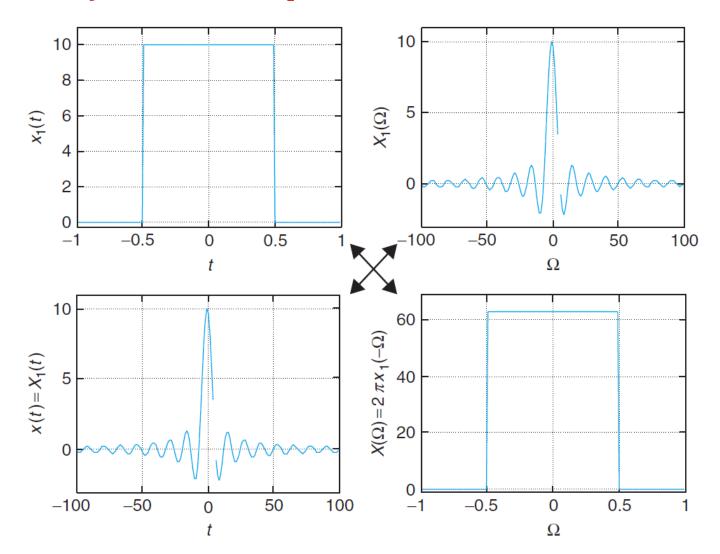


Duality

- By interchanging the frequency and the time variables in the definitions of the direct and the inverse Fourier transform similar equations are obtained
- Thus, the direct and the inverse Fourier transforms are dual



Duality: Example



Signal Modulation

Frequency shift: If $X(\Omega)$ is the Fourier transform of x(t), then we have the pair

$$x(t)e^{j\Omega_0t} \Leftrightarrow X(\Omega - \Omega_0)$$

Modulation: The Fourier transform of the modulated signal

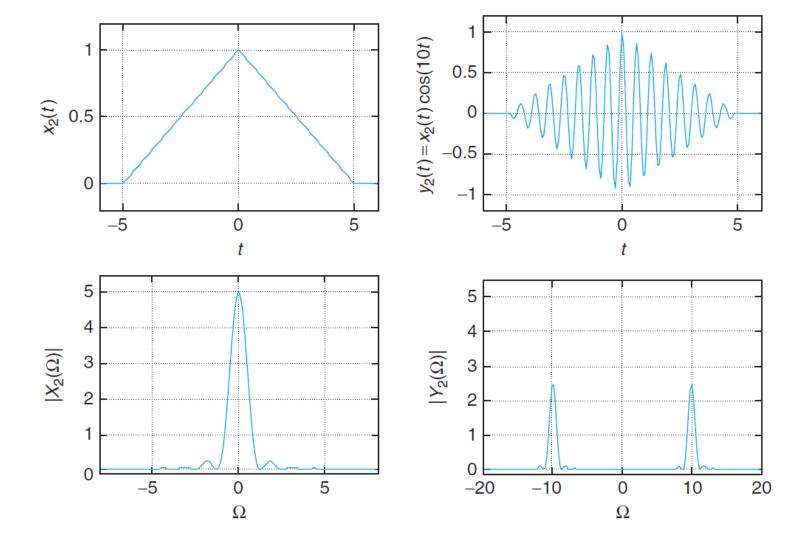
$$x(t)\cos(\Omega_0 t)$$

is given by

$$0.5 \left[X(\Omega - \Omega_0) + X(\Omega + \Omega_0) \right]$$

That is, $X(\Omega)$ is shifted to frequencies Ω_0 and $-\Omega_0$, and multiplied by 0.5.

Signal Modulation: Example



Fourier Transform of Periodic Signals

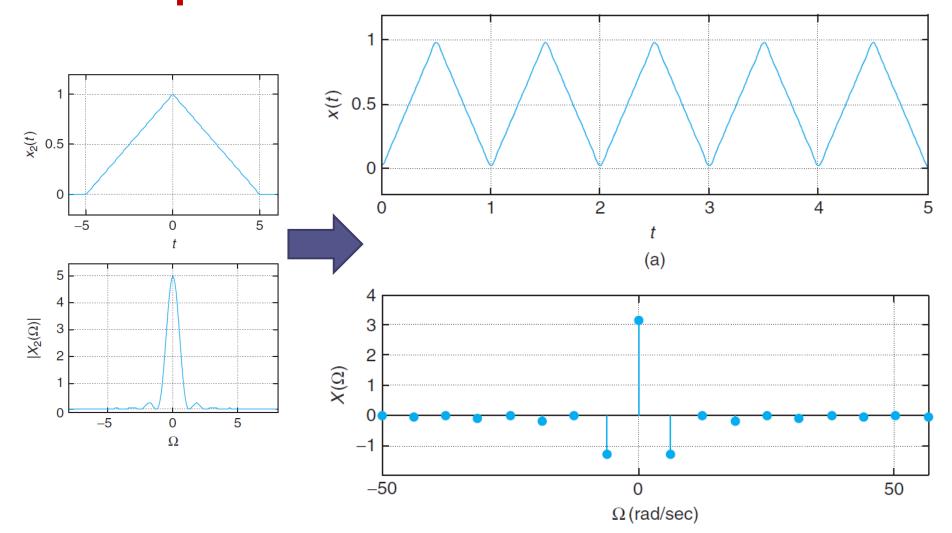
For a periodic signal x(t) of period T_0 , we have the Fourier pair

$$x(t) = \sum_k X_k e^{jk\Omega_0 t} \quad \Leftrightarrow \quad X(\Omega) = \sum_k 2\pi X_k \delta(\Omega - k\Omega_0)$$

obtained by representing x(t) by its Fourier series.

- Periodic Signals are represented by Sampled Fourier transform
- Sampled Signals are representing by Periodic Fourier Transform (from duality)

Fourier Transform of Periodic Signals: Example



Parseval's Energy Conservation

For a finite-energy signal x(t) with Fourier transform $X(\Omega)$, its energy is conserved when going from the time to the frequency domain, or

$$E_X = \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\Omega)|^2 d\Omega$$
 (5.15)

Thus, $|X(\Omega)|^2$ is an energy density indicating the amount of energy at each of the frequencies Ω .

The plot $|X(\Omega)|^2$ versus Ω is called the energy spectrum of x(t), and it displays how the energy of the signal is distributed over frequency.

• Energy in Time Domain = Energy in Frequency Domain

Symmetry of Spectral Representations

If $X(\Omega)$ is the Fourier transform of a real-valued signal x(t), periodic or aperiodic, the magnitude $|X(\Omega)|$ is an even function of Ω :

$$|X(\Omega)| = |X(-\Omega)| \tag{5.16}$$

and the phase $\angle X(\Omega)$ is an odd function of Ω :

$$\angle X(\Omega) = -\angle X(-\Omega) \tag{5.17}$$

We then have:

Magnitude spectrum: $|X(\Omega)|$ versus Ω

Phase spectrum: $\angle X(\Omega)$ versus Ω

Energy/power spectrum: $|X(\Omega)|^2$ versus Ω

 Clearly, if the signal is complex, the above symmetry will NOT hold

Convolution and Filtering

If the input x(t) (periodic or aperiodic) to a stable LTI system has a Fourier transform $X(\Omega)$, and the system has a frequency response $H(j\Omega) = \mathcal{F}[h(t)]$ where h(t) is the impulse response of the system, the output of the LTI system is the convolution integral y(t) = (x * h)(t), with Fourier transform

$$Y(\Omega) = X(\Omega) H(j\Omega)$$
 (5.18)

Relation between transfer function and frequency response:

$$H(j\Omega) = \mathcal{L}[h(t)]|_{s=j\Omega}$$

$$= H(s)|_{s=j\Omega}$$

$$H(j\Omega) = \frac{Y(\Omega)}{X(\Omega)}$$

Basics of Filtering

• The filter design consists in finding a transfer function H(s)=B(s)=A(s) that satisfies certain specifications that will allow getting rid of the noise. Such specifications are typically given in the frequency domain.

$$Y(\Omega) = H(j\Omega)X(\Omega)$$

Ideal Filters

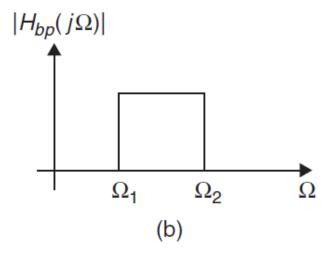
• (b) Band-Pass

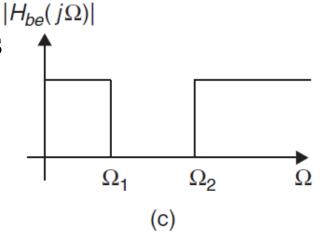
• (c) Band-Reject

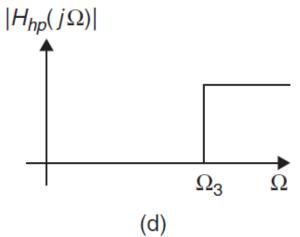
(a)

 Ω

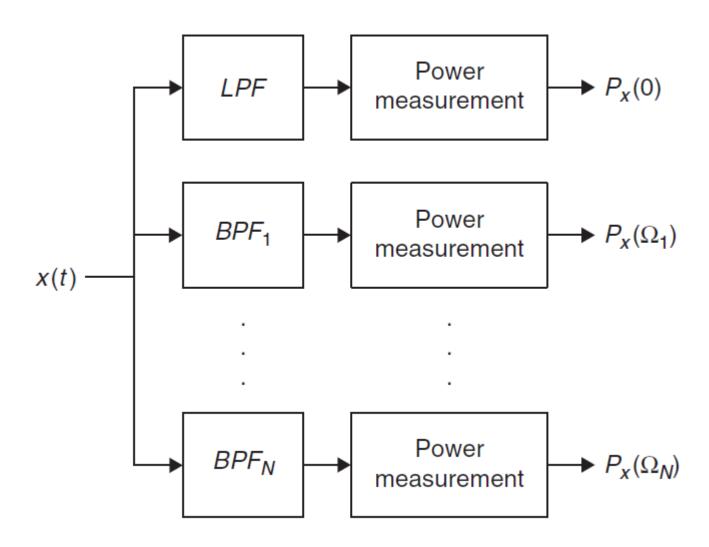
 Ω_1







Spectrum Analyzer



Time Shifting Property

If x(t) has a Fourier transform $X(\Omega)$, then

$$x(t - t_0) \Leftrightarrow X(\Omega)e^{-j\Omega t_0}$$

 $x(t + t_0) \Leftrightarrow X(\Omega)e^{j\Omega t_0}$

Example:

$$x(t) = A[\delta(t - \tau) + \delta(t + \tau)]$$

$$X(\Omega) = A[1e^{-j\Omega\tau} + 1e^{j\Omega\tau}]$$

Differentiation and Integration

If x(t), $-\infty < t < \infty$, has a Fourier tranform $X(\Omega)$, then

$$\frac{d^N x(t)}{dt^N} \qquad \Leftrightarrow \qquad (j\Omega)^N X(\Omega)$$

$$\frac{d^{N}x(t)}{dt^{N}} \quad \Leftrightarrow \quad (j\Omega)^{N}X(\Omega)$$

$$\int_{-\infty}^{t} x(\sigma)d\sigma \quad \Leftrightarrow \quad \frac{X(\Omega)}{j\Omega} + \pi X(0)\delta(\Omega)$$

where

$$X(0) = \int_{-\infty}^{\infty} x(t)dt$$

Table 5.1 Basic Properties of the Fourier Transform

	Time Domain	Frequency Domain
Signals and constants	$x(t), y(t), z(t), \alpha, \beta$	$X(\Omega), Y(\Omega), Z(\Omega)$
Linearity	$\alpha x(t) + \beta \gamma(t)$	$\alpha X(\Omega) + \beta Y(\Omega)$
Expansion/contraction in time	$x(\alpha t), \alpha \neq 0$	$\frac{1}{ \alpha }X\left(\frac{\Omega}{\alpha}\right)$
Reflection	x(-t)	$X(-\Omega)$
Parseval's energy relation	$E_x = \int_{-\infty}^{\infty} x(t) ^2 dt$	$E_x = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) ^2 d\Omega$
Duality	X(t)	$2\pi x(-\Omega)$
Time differentiation	$\frac{d^n x(t)}{dt^n}$, $n \ge 1$, integer	$(j\Omega)^n X(\Omega)$
Frequency differentiation	-jtx(t)	$\frac{dX(\Omega)}{d\Omega}$
Integration	$\int_{-\infty}^t x(t')dt'$	$\frac{X(\Omega)}{i\Omega} + \pi X(0)\delta(\Omega)$
Time shifting	$x(t-\alpha)$	$e^{-j\alpha\Omega}X(\Omega)$
Frequency shifting	$e^{j\Omega_0 t}x(t)$	$X(\Omega - \Omega_0)$
Modulation	$x(t)\cos(\Omega_c t)$	$0.5[X(\Omega - \Omega_c) + X(\Omega + \Omega_c)]$
Periodic signals	$x(t) = \sum_{k} X_k e^{jk\Omega_0 t}$	$X(\Omega) = \sum_{k} 2\pi X_k \delta(\Omega - k\Omega_0)$
Symmetry	x(t) real	$ X(\Omega) = X(-\Omega) $
		$\angle X(\Omega) = -\angle X(-\Omega)$
Convolution in time	z(t) = [x * y](t)	$Z(\Omega) = X(\Omega)Y(\Omega)$
Windowing/multiplication	x(t)y(t)	$\frac{1}{2\pi}[X*Y](\Omega)$
Cosine transform	x(t) even	$X(\Omega) = \int_{-\infty}^{\infty} x(t) \cos(\Omega t) dt$, real
Sine transform	x(t) odd	$X(\Omega) = -j \int_{-\infty}^{\infty} x(t) \sin(\Omega t) dt$, imaginary

Problem Assignments

- Problems: 5.4, 5.5, 5.6, 5.18, 5.20, 5.23
- Partial Solutions available from the student section of the textbook web site