

LAB #1: PRACTICAL ASPECTS OF OP AMP

Prof. Yasser Mostafa Kadah – www.k-space.org

EE 370 – 2015

Questions

- What is the maximum gain for this circuit?
- What is the maximum output voltage range?
- □ Can we use it for any frequency?
- □ Are there any sources of error in the output?
- Can we choose any values for the resistances?
- What is the maximum power supply range that we can use?
- How to choose power supply range?
- How to select a suitable Op Amp for a particular application?

Ideal Op Amp Characteristics

RULE 1 When the op-amp output is in its linear range, the two input terminals are at the same voltage.

RULE 2 *No current flows into either input terminal of the op amp.*

Inverting Amplifier

$$v_{
m o}=-iR_{
m f}=-v_{
m i}rac{R_{
m f}}{R_{
m i}}$$

$$\frac{v_{\rm o}}{v_{\rm i}} = \frac{-R_{\rm f}}{R_{\rm i}}$$

Summing Amplifier

$$v_{\mathrm{o}} = -R_f \left(\frac{v_{\mathrm{i}}}{R_{\mathrm{i}}} + \frac{v_{\mathrm{b}}}{R_{\mathrm{b}}} \right)$$

Voltage Follower

Noninverting Amplifier

Differential Amplifier

$$v_5 = \frac{v_4 R_4}{R_3 + R_4}$$

$$i = \frac{v_3 - v_5}{R_3} = \frac{v_5 - v_0}{R_4}$$

$$v_{
m o}=rac{(v_4-v_3)R_4}{R_3}$$

 $v_3 \circ \frac{R_3}{v_5} \quad \frac{v_5}{v_6} \quad \frac{R_4}{v_6}$

Disadvantage: Low input impedance

Instrumentation Amplifier

$$v_3 - v_4 = (v_1 - v_2) / R_{gain} \cdot (2R_1 + R_{gain})$$

$$v_o = \frac{v_1 - v_2}{R_{gain}} \cdot (2R_1 + R_{gain})R_3/R_2$$

□ Advantage: High input impedance

Differentiator

$$v_{\rm o} = -RCrac{dv_{\rm i}}{dt}$$

Active Filters

Low-pass filter $\frac{V_{o}(j\omega)}{V_{i}(j\omega)} = -\frac{Z_{f}}{Z_{i}} = -\frac{\frac{(R_{f}/j\omega C_{f})}{[(1/j\omega C_{f}) + R_{f}]}}{R_{i}}$ $= \frac{R_{f}}{(1 + j\omega R_{f}C_{f})R_{i}} = -\frac{R_{f}}{R_{i}}\frac{1}{1 + j\omega\tau}$

- Band-pass filter
 - Combination of the two

- Linear range limitations
 - Depends on power supply range (slightly less)

Gain-Bandwidth Product = Constant for a given Op Amp
 Evaluate using Log-Log plots

Slew Rate

Offset voltage

- Small voltage between their inverting and noninverting inputs to balance mismatches due to unavoidable process variations
- Input offset voltage is of concern anytime that DC accuracy is required of the circuit
- Some Op Amps offer external offset nulling inputs

Input bias current

- Input circuitry of all op amps requires a certain amount of bias current for proper operation
- Input bias current is of concern when the source impedance is high

Example: 741 Op Amp

	tional				r	
N Sem	iconductor	E	Bandwidth (Note 6)	1.5	MHz	
V		5	Slew Rate	0.7	V/µs	
LM741					r	
Operational Amplifier		lifier	Output Voltage Swing	$V_{S} = \pm 20V$		
Dual-I	In-Line or S.O. Packa	ige	Metal Can Package	L.		
OFFSET NULL -	1 8 NC 2 7 V ⁺				all'	
NON-INVERTING - INPUT	3 6 – OUTPUT		INVERTING INPUT			
v	4 5 OFFSET I	NULL				

Example: LH6702 Wideband Op Amp

LMH6702

www.ti.com

SNOSA03F-NOVEMBER 2002-REVISED MARCH 2013

LMH6702 1.7 GHz, Ultra Low Distortion, Wideband Op Amp

- -3dB Bandwidth ($V_{OUT} = 0.5 V_{PP}$) 1.7 GHz
- Fast Slew Rate 3100V/µs
- Low Noise 1.83nV/√Hz

Basics of Electronic Components

- An electronic component is any device that handles electricity
- Electronic components come in many different shapes and sizes, and perform different electrical functions depending upon the purpose for which they are used
- Electronic equipment make use of a variety of components

Active vs. Passive Components

Passive

- One that contributes no power gain (amplification) to a circuit or system
- No control action and does not require any input other than a signal to perform its function

Active

- Capable of controlling voltages or currents and can create a switching action in the circuit
- Can amplify or interpret a signal

Discrete vs. Integrated Circuits

- When a component is packaged with one or two functional elements, it is known as a *discrete* component
 Examples: resistors, inductors and capacitors
- An *integrated circuit* is a combination of several interconnected discrete components packaged in a single case to perform multiple functions
 - Examples: microprocessors and OP AMPs

Component Leads

- Two types on the basis of the method of their attachment to the circuit board
 - Through-hole components
 - Surface mount components

Cross-section of a surface mount solder joint

Component Leads: Examples

- Components with axial leads
- Components with radial leads
- Single-in-line package (SIL)
- Dual-inline package (DIP)
- Pin grid arrays (PGA)
- Ball grid arrays (BGA)
- Leadless components

Polarity in Components

- Some components are polarized and therefore have leads which are marked with positive and negative polarity
 - Must be placed on the board in the correct orientation
 - **Examples: electrolytic capacitors and diodes**

Component Symbols

- Each discrete component has a specific symbol when represented on a schematic diagram
 - Standardized and specified in the IEEE standard 315 and 315A (ANSI Y32.2)
- Integrated circuits are generally represented by a block in the schematic diagram
 - Do not have a specific symbol

Resistors

- Fixed or variable
- Carbon
 - Good in high frequency
 - Limited accuracy to 1%
 - Drift with temperature and vibration
- Metal film
 - stable under temperature and vibration
 - Reach accuracies of 0.1% in precision films
- Wire-wound Resistors
 - Very high accuracy possible

Resistors: Examples

Carbon film

From the top of the photograph 1/8W 1/4W 1/2W

Approximate size

Rating power (W)	Thickness (mm)	Length (mm)		
1/8	2	3		
1/4	2	6		
1/2	3	9		

Metal Film

Approximate size

Rating power (W)	Thickness (mm)	Length (mm)		
1/8	2	3		
1/4	2	6		
1	3.5	12		
2	5	15		

From the top of the photograph 1/8W (tolerance ± 1%) 1/4W (tolerance ± 1%) 1W (tolerance ± 5%) 2W (tolerance ± 5%)

Resistors: Thick Film Networks

- precious metals in a glass binding system which have been screened on to a ceramic substrate and fired at high temperatures
 - Miniaturization and rugged construction
 - Inherently reliable, not subject to catastrophic failures
 - SIL or DIP packages

Resistors: Packages

- (a),(b),(c) Cylindrical package with axial leads
- □ (d), (e) Cylindrical package with radial leads
- □ (f) radial package with radial lead
- (g) high-power package, with axial leads and copper body for increased heat dissipation

Resistors: Characteristics

- Resistance
- □ Tolerance
- Power Rating
- Temperature Coefficient (hot spot temperature)
- Stability or Drift
- Noise
- Parasitic Effects
- Maximum Voltage
- Identification

Resistors: Values

Code

 $F = \pm 1\%$ $G = \pm 2\%$ $j = \pm 5\%$
 $K = \pm 10\%$ $M = \pm 20\% \pm$

R 68M is a 0.68 $\Omega \pm 20\%$ resistor 5K 6J is a 5.6 k $\Omega \pm 5\%$ resistor 82KK is 82 k $\Omega \pm 10\%$ resistor

1 st Band		2 nd Bane	d					
Black	0	Black	0		3 rd Band			
Brown	1	Brown	1	Silver	Divide by 100			
Red	2	Red	2	Gold	Divide by 10		l	
Orange	3	Orange	3	Black	Multiply by 1			Τ
Yellow	4	Yellow	4	Brown	Multiply by 10			L
Green	5	Green	5	Red	Multiply by 100	ath	D	
Blue	6	Blue	6	Orange	Multiply by 1,000	(tole	rance)	
Violet	7	Violet	7	Yellow	Multiply by 10,000	Red	± 2%]
Grey	8	Grey	8	Green	Multiply by 100,000	Gold	± 5%	1
White	9	White	9	Blue	Multiply by 1,000,000	Silver	± 10%	1

□ Preferred range:

- E 12 series (common): 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82
- **E** 96 series: for ± 1%

		Five B	and Re	sistors						
1 st Band		2 nd Ba	2 nd Band		3 rd Band			[
Black	0	Black	0	Black	0		4 th Band			
Brown	1	Brown	1	Brown	1	Silver	Divide by 100			
Red	2	Red	2	Red	2	Gold	Divide by 10			
Orange	3	Orange	3	Orange	3	Black	Multiply by 1			Τ
Yellow	4	Yellow	4	Yellow	4	Brown	Multiply by 10			
Green	5	Green	5	Green	5	Red	Multiply by 100	5 ^{en} Band (tolerance)		
Blue	6	Blue	6	Blue	6	Orange	Multiply by 1,000	Brown	± 1%]
Violet	7	Violet	7	Violet	7	Yellow	Multiply by 10,000	Red	±2%	1
Grey	8	Grey	8	Grey	8	Green	Multiply by 100,000	Gold	± 5%	1
White	9	White	9	White	9	Blue	Multiply by 1,000,000	Silver	± 10%	1

Variable Resistors or Potentiometers

"Pots" consist of a track of some type of resistance material with which a movable wiper makes contact
 3 Categories: (a) Carbon (b) Cermet (c) Wire wound

Skeleton trimmer (carbon) Cermet multi-turn pot

Variable Resistors or Potentiometers

- Pots can be categorized into the following types depending upon the number of resistors and control arrangement used:
 - Single Potentiometers: Pot control with one resistor
 - Tandem Potentiometers: Two identical resistor units controlled by one spindle
 - Twin Potentiometers: Two resistor units controlled by two independent concentric spindles
 - Multi-turn Potentiometers: Potentiometer with knob or gear wheel for resistance adjustment; they may have up to 40 rotations of spindle
 - *Potpack*: Rectangular pots, either single or multi-turn

Variable Resistors or Potentiometers

 Variable resistor can be used either as a rheostat or potentiometer

- Construction resistance laws:
 - Linear
 - Logarithmic
 - Sine-Cosine

Light-dependent Resistors (LDRs)

- Made of cadmium sulphide and contain very few free electrons
 - When kept in complete darkness and therefore, exhibit very high resistance.
 - When in light, electrons are liberated and the material becomes more conducting.
- □ Typical dark resistance of LDRs is 1-10 MOhms.
- □ Typical light resistance is 75 -300 ohms.
- LDRs take some finite time to change its state and this time is called the recovery time.
 - **Typical recovery rate is 200 kOhms/sec.**

Thermistors

- Resistors with high temperature co-efficient of resistance
- Two types:
 - Positive temperature coefficient (PTC)
 - Negative temperature coefficient (NTC) (most popular)
- Available in a wide variety of shapes and forms suitable for use in different applications.
- Inherently nonlinear resistance-temperature curve
 Can be linearized by proper circuit

- Passive component that can be used to store electrical charge – measured in Farads (F)
- Consists of two facing conductive plates called electrodes, which are separated by a dielectric or insulator

Graphical symbols

Color code

Code for numbered capacitors

 $F = \pm 1\%$, $G = \pm 2\%$, $J = \pm 5\%$, $K = \pm 10\%$, $M = \pm 20\%$ and Z = +80 to -20%

□ Types

Paper capacitors

	Typical range	:	10 nF to 10 μ F					
	Typical dc voltage	:	500 V(max.)					
	Tolerance	:	± 10%					
Mica capacitors								

	Typical range	:	5 pF to 10 nF
	Typical dc voltage	:	50 to 500 V
Cerar	Tolerance	:	$\pm 0.5\%$
• • • •			

Typical range	:	(a) Low loss (steatite)	Typical voltage range	:	For a and b
		5 pF to 10 nF			60 V to 10 kV
		(b) Barium titanate 5 pF to 1 μ F			For c: 60 V to 400 V
		(c) Monolithic	Tolerance	·	$\pm 10\%$ to $\pm 20\%$
		1 nF to 47 µF		•	

- Capacitance
- □ Tolerance
- Working Voltage (= ½ breakdown voltage)
- Temperature Coefficient
- DC Leakage
- Parasitic Effects
 - dissipation factor (*DF*)=1/*Q*

Variable Capacitors

Variable capacitor has a stator and a rotor to change area

Button type Tubular type 90° 180° 270° 360° Max. rating Rotor Rotor electrode Capacitance (Metallized surface) Stator Teflon Dielectric Adjustment Piston screw (Rotor electrode) **Tension nut** Min. rating Rotor rotation Stator electrode (Metalized ннн surface) Ceramic case Tension spring Contact Stator Glass tube **Bushing** electrode dielectric

- A device that resists change in the current through the device.
- Inductors work on the principle that when a current flows in a coil of wire, a magnetic field is produced, which collapses when the current is stopped.
- The collapsing magnetic field produces an electromotive force which tries to maintain the current.

Inductor Band Colour Codes

1 st Band (Value)		2 nd B (Valu	2 nd Band (Value)		3 rd B	and (Multiplier)			
		Black	Black 0		Black ×1 or no zeros		Ath	4th Bond	
Brown	1	Brown	1	E	Brown	× 10 or +1 zero	(tole	rance)	
Red	2	Red	2	F	Red	imes 100 or +2 zeros	Red	± 2%	
Orange	3	Orange	3		Drange	imes 1k or +3 zeros	Gold	± 5%	
Yellow	4	Yellow	4		ellow	× 10k or +4 zeros			
Green	5	Green	5		Green	× 100k or +5 zeros	Green	± 5%	
Blue	6	Blue	6		Blue	× 1m or +6 zeros	Blue	± .25%	
Violet	7	Violet	7				Violet	±.1%	
Grey	8	Grey	8	(Gold	×.1	Gold	± 5%	
White	9	White	9		Silver	× .01	Silver	± 10%	

□ The primary use of an inductor is filtering.

- High current inductors wound around a large core are used in power supply filters
- Low current air core inductors are used in signal filters
- Basic components of an inductor are the former (or bobbin), winding wire (with or without separating material) and the core material
 - Bobbins are normally made of molded plastic
 - Winding is usually enameled copper wire
 - Core material can be laminated steel, powdered iron or ferrite Shape also varies

 A diode is an active component made of semiconductor material through which the current flows more easily in one direction than in the other

Zener Diodes

- Breakdown avalanche or the Zener voltage
 - Range from 1 volt to several hundred volts
 - Behaves like a voltage source in the Zener region
- Distinguish Zener diode from a general purpose diode by being usually labelled with its specified breakdown voltage

Varactor Diode

- Silicon diode that works as a variable capacitor in response to a range of reverse voltage values
 - Nominal capacitance values ranging from 1 to 500 pF
 - Maximum rated operating voltages from 10 to 100 volts

- Semiconductor device having voltage-dependent non-linear resistance that drops as applied voltage is increased
- Symmetrical variator arrangements are used in meter protection circuits

Light Emitting Diodes (LEDs)

- A LED is basically a p-n junction that emits light when forward biased
 - Different colors and shapes

flat on side of case)

(Cathode identified by larger lead)

Photodiode

- A photodiode is a solid state device, similar to a conventional diode, except that when light falls on it, it causes the device to conduct
 - Practically an open circuit in darkness, but conducts a substantial amount of current when exposed to light.

Tunnel Diode (TD)

A tunnel diode is a p-n junction which exhibits a negative resistance interval

Transistors

Bipolar junction transistors (BJT)

Transistors

Metal-cased transistor

Power Transistors

Darlington Pair Transistors

□ Higher current gain

Field-Effect Transistor (FET)

Field-Effect Transistor (FET)

Transistor Type Numbers

Joint Electron Device Engineering Council (JEDEC)

- Digit, letter, serial number, (suffix),
- Letter is always 'N', the serial number runs from 100 to 9999 (arbitrary), optional suffix indicates the gain (hfe) group of the device.

A =	low gain	В	= medium gain
C =	high gain	No suffix	= ungrouped (any gain)

Transistor Type Numbers

- Japanese Industrial Standard (JIS)
 - Digit, two letters, serial number, (suffix)
- SA = PNP HF transistor
- SC = NPN HF transistor
- SJ = P-channel FET/MOSFET

Examples: 2SA1187, 2SB646, 2SC733.

- SB = PNP AF transistor
- SD = NPN AF transistor
- SK = N-channel FET/MOSFET

Transistor Type Numbers

Pro-electron System (European)

- Two letters, (letter), serial number, (suffix)
- First letter: material
- A = Germanium (Ge)
- C = Gallium Arsenide (GaAs)

Second letter: device application

- C = Transistor, AF, small signal
- F = Transistor, HF, small signal
- U = Transistor, power, switching
 - Suffix: like JEDEC
 - Examples: BC108A, BAW68, BF239, BFY51

- B = Silicon (Si)
- R = Compound materials
- D = Transistor, AF, power
- L = Transistor, HF, power

Thyristors

Silicon-controlled rectifier (SCR)

Triac (bidirectional triode thyristor)

Optocoupler/Optoisolator/Optotriac

- Cathode ray oscilloscope (CRO) (old analog)
- Digital storage oscilloscope (DSO) (new digital)

Function Generator

Power Supply

Multimeter

Logic Analyzer

Cables / Connectors

- Banana connectors
- Alligator (Crocodile) connectors
- **BNC** connector
- Oscilloscope probe
- Multimeter test leads

Suggested Readings and Assignments

- □ Laboratory Introduction handout on class web site
- □ Lab #1 requirements posted on web site