EE 472: Biomedical Imaging Systems

COURSE TITLE	ENGLISH	ARABIC		CR.	EDI'	T
	CODE/NO	CODE/NO	Th.	Pr.	Tr.	Total
Biomedical Imaging Systems	EE 472	ھك 472	3	1	0	3
Pre-requisites:	EE 302, EE 370					
Course Role in Curriculum	Required or .	Required				
	A pre-requisite for:					
Catalogue Description	_					

Catalogue Description:

Fundamentals of medical imaging physics and systems: X-ray radiography, ultrasound, radionuclide imaging, and magnetic resonance imaging (MRI). Biological effects of each modality. Tomographical reconstruction principles, including X-ray computed tomography (CT), position emission tomography (PET), and single-photon emission computed tomography (SPECT).

Textbooks:

- 1. Peter R. Hoskins, Kevin Martin, Abigail Thrush, *Diagnostic Ultrasound: Physics and Equipment*, 2nd ed., Cambridge University Press, 2010. (ISBN-13: 978-0521757102)
- 2. Ray Hashman Hashemi, William G. Bradley Jr., Christopher J. Lisanti, *MRI: The Basics*, 3rd ed., Lippincot, Williams and Wilkins, 2010. (ISBN-13: 978-1608311156)
- 3. Stewart C. Bushong, Geoffrey Clarke, *Magnetic Resonance Imaging: Physical and Biological Principles*, 4th ed., Mosby, 2014. (ISBN-13: 978-0323073547)
- 4. Stewart C. Bushong, *Radiologic Science for Technologists: Physics, Biology, and Protection*, 10th ed., Mosby, 2012. (ISBN-13: 978-0323081351)
- 5. William R. Hendee, E. Russell Ritenour, *Medical Imaging Physics*, 4th ed., Wiley-Liss, 2002. (ISBN-13: 978-0471382263)
- 6. Nadine Barrie Smith, Andrew Webb, *Introduction to Medical Imaging: Physics, Engineering and Clinical Applications*, Cambridge University Press, 2010. (ISBN-13: 978-0521190657)

Supplementary Materials:

1. Course Notes

Course Learning Outcomes:

By the completion of the course the student should be able to:

- 1. Analyze ultrasound imaging techniques
- 2. Analyze magnetic resonance imaging techniques
- 3. Analyze x-ray imaging techniques
- 4. Analyze CT imaging techniques
- 5. Analyze nuclear medicine based imaging techniques

pics to be Covered:	<u>Duration</u>
	<u>in Weeks:</u>
Ultrasound imaging	3
Magnetic resonance imaging	3
X-ray imaging	3
Computed Tomography	2.5
Nuclear Medicine	2.5
	Ultrasound imaging Magnetic resonance imaging X-ray imaging Computed Tomography

Student Outcomes addressed by the course: (Put a "x" sign)

, 8 /		
(a) an ability to apply knowledge of mathematics, science, and engineering		
(b) an ability to design and conduct experiments, as well as to analyze and interpret		
data		
(c) an ability to design a system, component, or process to meet desired needs within	X	
realistic constraints such as economic, environmental, social, political, ethical,		
health and safety, manufacturability, and sustainability		
(d) an ability to function on multidisciplinary teams		
(e) an ability to identify, formulate, and solve engineering problems		
(f) an understanding of professional and ethical responsibility		
(g) an ability to communicate effectively	X	
(h) the broad education necessary to understand the impact of engineering solutions		
in a global, economic, environmental, and societal context		
(i) a recognition of the need for, and an ability to engage in life-long learning		
(j) a knowledge of contemporary issues		
(k) an ability to use the techniques, skills, and modern engineering tools necessary for		
engineering practice.		

<u>Instructor or course coordinator:</u> Prof. Yasser Kadah <u>Last updated:</u> September 2017

Grading Policy

Class Homework	10%
Major Exams (3)	60%
Projects	0%
Final Exam	30%

Notes:

- Students are allowed to bring 1 sheet of notes to exams / topic (max 5 sheets in final exam)
- Exam style consist of a mix of Multiple Choice Questions (MCQ), True/False Questions, and General Problems.