

ULTRASOUND IMAGING

Prof. Yasser Mostafa Kadah – www.k-space.org

EE 472 - F2018

Recommended Textbook

 Diagnostic Ultrasound: Physics and Equipment, 2nd ed., by Peter R. Hoskins (Editor), Kevin Martin (Editor), Abigail Thrush (Editor) Cambridge University Press, 2010.

Introduction to B-mode imaging

- □ B-mode image is an anatomic cross-sectional image
- □ Constructed from echoes (reflection and scattering) of waves
- Echo is displayed at a point in image, which corresponds to relative position of its origin within the body cross section
- Brightness of image at each point is related to strength of echo

Term B-mode stands for Brightness-mode

Echo Ranging

To display each echo in a position corresponding to that of the interface or feature (known as a target) that caused it, the B-mode system needs two pieces of information:

(1) Range (distance) of the target from the transducer

(2) Position and orientation of the ultrasound beam

- Sound waves used to form medical images are longitudinal waves, which propagate (travel) only through a physical medium (usually tissue or liquid)
 - Characterized by frequency, wavelength, speed and phase

$c = f\lambda$		Speed of sound $c = \sqrt{\frac{k}{\rho}}$	
Material	<i>c</i> (m s ^{−1})	Pressure	
Liver	1578	$\square \square $	
Kidney	1560	\vee \vee \vee \vee	
Amniotic fluid	1534		
Fat	1430		
Average tissue	1540		
Water	1480		
Bone	3190-3406		
Air	333	$\longleftarrow \longrightarrow \longleftarrow \longrightarrow \longleftarrow$	
		Particle displacement	

□ Medical ultrasound frequencies used in the range 2–15 MHz

Higher frequencies are now utilized for special applications

Resolution proportional to waveleath	f(MHz)	λ (mm)
	2	0.77
	5	0.31
$ = A $ counting improved on country $7 = \frac{1}{2} \frac{1}{12} \frac{1}{1$	10	0.15
\square Acoustic impediatice $z - prv$	15	0.1

 \square p is the local pressure and v is the local particle velocity.

Analogous to electrical impedance (or resistance R)

$$z = \sqrt{\rho k} = \rho c$$

Material	$z (\text{kg m}^{-2} \text{ s}^{-1})$
Liver	1.66×10^{6}
Kidney	1.64×10^{6}
Blood	1.67×10^{6}
Fat	1.33×10^{6}
Water	1.48×10^{6}
Air	430
Bone	6.47×10^{6}

Reflection: Large Interfaces

$$R_A = \frac{p_r}{p_i} = \frac{z_2 - z_1}{z_2 + z_1}$$
$$\frac{I_r}{I_i} = R_i = R_A^2$$

Interface	R _A
Liver-kidney	0.006
Kidney–spleen	0.003
Blood-kidney	0.009
Liver-fat	0.11
Liver-bone	0.59
Liver-air	0.9995

Scattering: Small Interfaces (size less than wavelength)

$$W_s \propto \frac{d^6}{\lambda^4} \propto d^6 f^4$$

- Two important aspects of scattering:
 - Ultrasonic power scattered back is small compared to reflections
 - Beam angle-independent appearance in the image unlike reflections
- Diffuse Reflection: Rough Surfaces

Focusing: narrower ultrasound beam
(a)
(a)

(b)

Acoustic pressure and intensities within ultrasound beam

- Transducer: device that actually converts electrical transmission pulses into ultrasonic pulses and, conversely, ultrasonic echo pulses into electrical echo signals
- Beamformer: part of scanner that determines the shape, size and position of the interrogating beams by controlling electrical signals to and from the transducer array elements

Transmission Focusing Extra path length Earlier Large pulse at focus transmission **Reception focusing** Delay-Sum beamforming Signals out Signals Largeof phase in phase summed Signal Different path lengths Electronic signal summer and arrival times delays Echo source at desired receive focus

Dynamic reception focusing

Beamforming: selecting active elements and apodization

Beamforming: Multiple Transmission zones

Beamforming: Grating lobes

 No grating lobes, if the center-to-center distance between elements is half a wavelength or less

Slice thickness: elevation direction

Processing block diagram

Beam position and direction information

- Real-time display: frame every 1/25 s
- Freeze: updating frame stops
- □ Cine Loop: recording of real-time scan as a movie
- □ Frame Averaging: moving average filter to improve SNR

B-Mode Image Properties

B-Mode Image Properties

B-Mode Image Properties

Example: time to scan 1 cm= 2x1cm/c= 2 cm/(1540 m/s) = 13 μs
Then, frame time to scan a 20 cm depth with 128 lines=13 μs x20 x128
Frame rate = 1/ frame time = 30 frames/s

Doppler effect: Change in the observed frequency of the sound wave compared to the emitted frequency which occurs due to relative motion between observer and source

RBCS in blood are hardly visible in ultrasound images

Scattering because of its very small size

Carotid artery with calcified plaque

Red blood cell

Doppler Shift Equation

$$f_d = f_r - f_t = \frac{2f_t v \cos \theta}{c}$$

Doppler display modes

Spectral Doppler

Color Doppler

Continuous Wave (CW) Doppler

- Only a small region for Doppler sensitivity
- No range information
- No limitation on maximum velocity and high velocity accuracy

Pulsed-Wave (PW) Doppler

- Range information is available and region is selectable by user
- Limitations on maximum velocity and accuracy

CW Signal Processing

Clutter: signal from stationary tissues

- Low Doppler shift and much stronger signal
- Signal from stationary tissue and wall motion
- Critical step in Doppler processing

	Velocity ranges	Signal intensity
Blood	$0-600 \text{ cm s}^{-1}$	Low
Tissue	$0-10 \text{ cm s}^{-1}$	40 dB higher
		than blood

PW Doppler processing: Sampled version of CW Doppler

□ Time-domain PW processing techniques (a) First pulse, time t₁

(b) Second pulse, time t₂

$$d_1 = c t_1/2,$$
 $d_2 = c t_2/2$
 $d_m = d_2 - d_1$

$$d_{\rm m}=c(t_2-t_1)/2$$

$$PRI = t_2 - t_1$$
 $PRI = 1/PRF$

$$v = d_m / PRI = (t_2 - t_1) c PRF/2$$

Example: Consider Doppler imaging of a vessel at depth d1= 10 cm. derive the maximum detectible velocity if the transmitted signal frequency was 5 MHz and Doppler angle was 45°.

Time to collect one sample = PRI = $13\mu s/cm \times (10 cm) = 130\mu s$ Sampling frequency = PRF = $1/PRI = 7692 Sa/s = 2 f_d^{max}$ $v = \frac{c f_d}{2f_t \cos \theta} v_{max} = (1540 \times 7692/2)/(2 \times 5 \times 10^6 \times Cos(45^\circ))$

Aliasing

Highest Doppler frequency shift that can be measured is equal to PRF/2

Angle dependence

Estimated Doppler shift is dependent on cosine of the angle between the beam and the direction of motion

Clutter breakthrough

- Tissue motion giving rise to Doppler frequencies above wall thump or clutter filter may be displayed on spectral Doppler or color flow systems
- Loss of low Doppler
 - Blood velocities which give rise to low Doppler frequencies (as a result of low velocity or angle near to 90°) will not be displayed if value of Doppler frequency is below the level of wall thump or clutter filter

Color Doppler

Maps mean blood velocity at each points and encodes it in color on the usual B&W ultrasound image

Power Doppler

Estimate of the power of all shifted components

Ultrasound Safety

- A fundamental approach to the safe use of diagnostic ultrasound is to use the lowest output power and the shortest scan time consistent with acquiring the required diagnostic information
 - "ALARA" principle (i.e. as low as reasonably achievable)

Ultrasound Imaging System: External Look

Keyboard Controls

Covered Material and Suggest Problems

- Chapter 2: problems 3, 4, 5, 7, 10
- Chapter 3: problems 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- □ Chapter 4: problems 1, 2, 3, 4, 5
- Chapter 7: problems 3, 4, 5, 6, 7, 8
- Consider Doppler blood flow velocity estimation in a vessel at depth of 5 cm and angle of 60°. Find out whether aliasing will occur when estimating blood velocity if the actual velocity in that vessel is 50 cm/s. Let the transmitted signal frequency be 7 MHz.