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Ultrasound imaging is a widely used and safe medical diagnostic technique, due to its noninvasive nature, low
cost, capability of forming real time imaging, and the continuing improvements in image quality. However, the
usefulness of ultrasound imaging is degraded by the presence of signal dependent noise known as speckle.
In this paper, we propose a new method for speckle reduction and coherence enhancement of ultrasound
images based on a hybrid of total variation (TV) method and wavelet thresholding. In this model, a noisy image
is decomposed into four subbands in wavelet domain. The low frequency subband contains the low frequency
coefficients with less noise that can be easily eliminated using TV-based method. More edges and other detailed
information like textures are contained in the other three subbands the wavelet based soft thresholding is applied
on these three subbands. In the last step we use TV method to get the final denoised image since the TV is
the ability of preserving edge is smoothening by wavelet thresholding. The proposed method is compared with
previous methods as applied to simulated and real data using quantitative quality evaluation metrics to show
the advantage of the new method.
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1. INTRODUCTION
Ultrasound imaging is a widely used and safe medical diagnos-
tic technique and is often preferred over other medical imaging
modalities, due to its noninvasive nature, low cost, capability of
forming real time imaging, and the continuing improvements in
image quality.1 However, the main weakness of medical ultra-
sound image is the poor quality of images, mainly due to mul-
tiplicative speckle noise that degrades the visual evaluation in
ultrasound imaging.2

The presence of speckle noise in ultrasound images has been
studied and documented since the early 1970s when researchers
such as Burckhardt,3 Wagner et al.4 and Goodman5 described
the fundamentals and the statistical properties of the speckle
noise. Speckle is not really noise in the typical engineering sense
because its texture often carries useful information about the
image being viewed. It is the primary factor that limits the con-
trast resolution in diagnostic ultrasound imaging, thereby limit-
ing the detectability of small, low-contrast lesions and making
the ultrasound images generally difficult for the non specialist to
interpret.3�4�6�7 Speckle noise also limits the effective application
of image processing and analysis algorithms (i.e., edge detection,
segmentation) and display in two-dimensional (2-D) and volume
rendering in 3-D. Therefore, speckle is most often considered a
dominant source of noise in ultrasound imaging and needed to be
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filtered out3�6�7 without affecting important features and texture
of the image.

Speckle in ultrasound B-scans is seen as a granular struc-
ture which is caused by the constructive and destructive coherent
interferences of back scattered echoes from the scatterers that
are typically much smaller than the spatial resolution of medical
ultrasound system. This phenomenon is common to laser, sonar
and synthetic aperture radar imagery (SAR). Speckle pattern is a
form of multiplicative noise and that depends on the structure of
imaged tissue and various imaging parameters. Speckle degrades
the target delectability in B-scan images and reduces the contrast,
resolutions which affect the human ability to identify normal and
pathological tissue. It also degrades the speed and accuracy of
ultrasound image processing tasks such as segmentation and reg-
istration. There are two main purposes for speckle reduction in
medical ultrasound imaging: (i) improve the human interpretation
of ultrasound images, (ii) preprocessing step for many ultrasound
image processing tasks such as segmentation and registration.8

In literature many techniques have been studied speckle noise
reduction. The medain filter (median) is a simple nonlinear opera-
tor that replaces the middle pixel in the window with the median-
value of its neighbors.9 Diffusion filters (srad) remove noise from
an image by modifying the image via solving a partial differential
equation (PDE). The smoothing of srad is carried out, depending
on the image edges and their directions. Anisotropic diffusion
is an efficient, nonlinear technique for simultaneously perform-
ing contrast enhancement and noise reduction.10 The concept of
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the geometric filtering is that speckle appears in the image as
narrow walls and valleys. The Geometric despeckle filter (gf4d),
through iterative repetition, that gradually tears down the narrow
walls (bright edges) and fills up the narrow valleys (dark edges),
thus smearing the weak edges that need to be preserved.11 First
Order Statistics Filtering, (lsmv) Mean and variance local statis-
tics despeckle filter this filter uses the first order statistics such
as the variance and the mean of the neighborhood.12

The image denoising is a field where one is frequently inter-
ested in removing noise without sacrificing important structures
such as edges. Since this is not possible with linear tech-
niques many nonlinear strategies have been proposed in the last
two decades, also image denoising problem has been widely
studied and two main approaches have been developed: the vari-
ational methods13–17 and wavelet techniques.18–24 Among varia-
tional approaches, a classical variational denoising algorithm is
the total variation minimization problem of Rudin-Osher-Fatemi
(ROF):14

MIN
u

{
J �u�+ �2��−1��f −u��22

}
(1)

where f is the noisy image, u is the image we want to restore
from f . The constant � > 0 is a turning parameter; larger value
of � gives blurring effect to the image. J �u� = ∫ ��u� is often
referred to as total variation (TV). So, this method tries to remove
local variations while maintaining the 2-norm distance to the
original image as small as possible to preserve major features.
The major advantage of the classical TV model is the ability of
preserving edges and fine structures while removing the noise
and artifacts. However, these TV-based methods undergo several
iterations for denoising. Thus, estimating the number of iterations
is the main disadvantage in TV-based denoising.25

The wavelet techniques are widely used in the image process-
ing, such as the image compression, image de-noising. It has
been shown that its performance of image processing is bet-
ter than the methods based on other linear transformation.
The wavelet de-noising method decomposes the image into the
wavelet basis and shrinks the wavelet coefficients in order to
despeckle the image. Wavelet soft-thresholding method is another
popular denoising method in image processing introduced by
Donoho et al. was studied and extended in several papers.19–21

They have introduced a universal threshold T , given by:

T =√
2�2 logN (2)

where, �2 is the noise variance and N is the total number of
pixels. The use of this universal threshold to denoise images in
wavelet domain is known as VisuShrink.20

In wavelet thresholding, the image is decomposed into approx-
imation (low-frequency) and detail (high-frequency) subbands,
and the coefficients in the detail subbands are processed via
hard or soft thresholding. The hard thresholding eliminates (sets
to zero) coefficients that are smaller than a threshold; the soft
thresholding shrinks the coefficients that are larger than the
threshold as well. The main task of the wavelet thresholding
is the selection of threshold value and the effect of denois-
ing depends on the selected threshold: a bigger threshold will
throw off the useful information and the noise components at the
same time while a smaller threshold cannot eliminate the noise
effectively.26

There has also been a rapidly increasing interest in design-
ing hybrid methods that uses both wavelet and TV denois-
ing methods.27–31 Durand et al.28 proposed a hybrid method to

remove the pseudo-Gibbs phenomenon by replacing the thresh-
olded coefficients by values minimizing the TV. Based on a
similar idea, Chan et al.29 postprocessed images obtained from
wavelet shrinkage by a TV regularization technique. Coifman
et al.30 postprocessed the signals that have been degraded by
wavelet thresholding by solving functional minimization prob-
lems with wavelet constraints.

The aim of the hybrid method proposed in this paper is to
resolve the contradiction between speckle noise suppression and
texture and edges image preserving, which cannot be resolved
by the TV-based method or wavelet method independently. The
TV model is the best, it is able to sufficiently remove spatially
adaptive noise and artifacts while preserving edges and fine struc-
tures, also a major strength of the wavelet thresholding is the
ability to treat different frequency components of an image sep-
arately; this is important, because noise in real scenarios may be
frequency dependent. But, in wavelet thresholding the problem
experienced is generally smoothening of edges. Which mean that
the wavelet approach and TV-based method were combined not
only to remove the noise, but also preserve the details, edges and
textures.

The paper is organized as follows. Section 2, explains material
and method description which consists of total variation, wavelet
decomposition, Wavelet thresholding, hybrid denoising method,
algorithm and image quality evaluation metrics. Section 3 depicts
the qualitative and quantitative comparison among different filters
showing the experimental results. Section 4 presents a discussion
of the method. Finally, the conclusion is presented in Section 5.

2. MATERIALS AND METHOD DESCRIPTION
2.1. Total Variation
Because of its virtue of preserving sharp edges, it is widely used
in many applications of image processing. Rudin et al.14 solved
the total variation minimization problem through PDE-based
schemes, which is numerical intensive. Besides, Chambolle’s
projection algorithm15 is a fast method to solve the ROF model
given as,

u= f −PG�
�f � (3)

where f is the noisy image, u is the image we want to restore
from f , G� = �v ∈G/�v�G ≤ �	� PG�

�f � is the orthogonal pro-
jection of f on G� and the space G is proposed by Meyer for
modeling oscillating patterns.13

2.2. Wavelet Decomposition
The wavelet decomposition process involves three basic steps as
follows:
(1) Linear forward wavelet transform
(2) Nonlinear thresholding step conversion of wavelets coeffi-
cients with threshold/shrinkage function
(3) Linear inverse wavelet transform.

2.3. Wavelet Thresholding
The wavelet-tresholding denoising methods modify each wavelet
coefficient by threshold function.

Let f = �fij , i, j = 1�2 
 
 
M} denote the M ×M matrix of
the original image and M is some integer power of 2. During
transmission the image f is corrupted by white Gaussian noise
with independent and identically distributed (i.i.d.) zero mean,
and standard deviation � i.e., nij ∼ N (0, �2). So, the noisy
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Fig. 1. Block diagram of the proposed despecking method. First, the input noisy image decompose into four subbands of LL, LH, HL, HH get the corresponding
wavelet coefficients CLL, CLH�CHL�CHH. Then apply total variation method (TV) to the LL subband (CLL) to get C̃LL also apply the wavelet thresholding (W)
to CLH�CHL�CHH, and get the modified wavelet C̃LH, C̃HL, C̃HH. After that, apply inverse wavelet transform on C̃LL, C̃LH, C̃HL, C̃HH and get the reconstructed
image. Finally, apply TV to reconstructed image to get the final denoised image.

image received at the receiver end is gij = fij +�nij . The goal
is to estimate the signal f from noisy observations gij . Let W
and W−1 denote the two dimensional orthogonal discrete wavelet
transform (DWT) matrix and its inverse respectively. Then, Y =
W · g represents the matrix of wavelet coefficients of g having
four subbands (LL, LH, HL and HH). The sub-bands HHk, HLk,
and LHk are called details, where K is the scale varying from
1, 2…J and J is the total number of decompositions. The size
of the subband at scale K is N/2K×N/2K. The subband LLJ

is the low-resolution residue. The wavelet thresholding denoising
method processes each coefficient of Y from the detail subbands
with a soft threshold function to obtain X̂.26 The denoised esti-
mate is inverse transformed to

f̂ =W−1X̂

The basic Procedure for all thresholding method is as follows:
(i) Calculate the DWT of the image.
(ii) Threshold the wavelet coefficients.
(iii) Compute the IDWT to get the denoised estimate.

There are two thresholding functions frequently used, i.e.,
a hard threshold, a soft threshold.

The hard-thresholding is described as

�1�w�= wI��w�> T � (4)

Where w is a wavelet coefficient, T is the threshold.

(a)  LL suband (b) HLsuband Horizontal
Direction

(c)  LH suband Vertical
Direction

(d) HH subband Diagonal
Direction

Fig. 2. Four subbands obtained by wavelet decomposition (liver image).

The soft-thresholding function is described as

�2�w�= �w− sgn�w�T �I��w�> T � (5)

Here sgn(x� is the sign function of x.32

In the algorithm we are proposing, soft thresholding has been
used over hard thresholding because it gives more visually pleas-
ant images as compared to hard thresholding; since the latter is
discontinuous and yields abrupt artifacts in the recovered images
especially when the noise energy is significant. The value of soft-
thresholding in the proposed algorithm is set at the same value
obtained with wavelet thresholding only,26 the best result in this
model was obtained when the threshold value is 0.01 using “db8”
filters.

2.4. Hybrid Denoising Method
Let f be an input image corrupted by the speckle noise. The
wavelet representation of f can be described in terms of scaling
and wavelet functions as:

f = ∑

k∈Z2

�f ��0� k	�0� k+
∑

k∈Z2


∑

j=0

3∑

i=1

�f �i
j� k	i

j�k (6)

where � is the scaling function, and  are a wavelet function,
 = �1�2�3	 are two-dimensional wavelets constructed by

(a) LL subband after
denoising (TV)

(b) HL subband after
thresholding method

(c) LH subband after
thresholding method

(d) HH subband after
thresholding method

Fig. 3. Modified subbands obtained by apply TV to LL subband and wavelet
thresholding to another subbands (liver image).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Qualitative results of various filters; original abdominal ultrasound image given in (a), median filter in (b), speckle reducing anisotropic diffusion filtering
(srad) in (c), geometric despeckle filter (gf4d) in (d), mean and variance local statistics despeckle filter (lsmv ) in (e), wavelet Thresholding in (f), total variation
despeckle filter in (g), and proposed method in (h).

tensor products of a one-dimensional orthogonal wavelet system,
where 1 is the vertical, 2 the horizontal and 3 is the diagonal.
We decompose the image to one level, which results in LL, HL,
LH and HH subbands, i.e.,

f = ∑

k∈Z2

�f ��0�K	�0�K + ∑

k∈Z2

3∑

i=1

�f �i
j� k	i

0�K (7)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Qualitative results of various filters; original obstetrical ultrasound image given in (a), median filter in (b), speckle reducing anisotropic diffusion filtering
(srad) in (c), geometric despeckle filter (gf4d) in (d), mean and variance local statistics despeckle filter (lsmv ) in (e), wavelet thresholding in (f), total variation
despeckle filter in (g), and proposed method in (h).

We denote the wavelet coefficients corresponding to the four
subbands by:

CLL = �f ��0�k	� CLH = �f �1
0�K	

CHL = �f �2
0�k	� CHH = �f �3

0�K	
where CLL is called low frequency subband, CLH�CHL�CHH

are called high frequency subbands of vertical, horizontal, and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Qualitative results of various filters; original small parts ultrasound image given in (a), median filter in (b), speckle reducing anisotropic diffusion filtering
(srad) in (c), geometric despeckle filter (gf4d) in (d), mean and variance local statistics despeckle filter (lsmv ) in (e), wavelet thresholding in (f), total variation
despeckle filter in (g), and proposed method in (h).

diagonal directions, respectively. Since the wavelet coefficients
of the noise and textures mainly concentrate on the high fre-
quency subbands, we apply the soft wavelet thresholding to get
modified wavelet coefficients C̃LH, C̃HL, C̃HH, the C̃LL subband
contains less noise which can be easily eliminated using total
variation, so we can apply Chambolle’s method to denoise the
LL subband. Then we apply Chambolle’s projection algorithm15

to LL subband and get the modified coefficient given by:

C̃LL = CLL−PG�
�CLL� (8)

After obtaining the modified coefficients C̃LL, C̃LH, C̃HL, C̃HH

we apply inverse wavelet transform and get the reconstructed

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Qualitative results of various filters; original abdominal ultrasound image given in (a), median filter in (b), speckle reducing anisotropic diffusion filtering
(srad) in (c), geometric despeckle filter (gf4d) in (d), mean and variance local statistics despeckle filter (lsmv ) in (e), wavelet thresholding in (f), total variation
despeckle filter in (g), and proposed method in (h).

image, Finally TV method to reconstructed image is applied to
get the final denoised image, Figure 1 summarized the proposed
method in block diagram.

2.5. Algorithm
According to the analysis of the combined method given above,
the proposed algorithm can be summarized as following:

Step 1: Decompose the input image into four subbands of LL,
LH, HL, HH and get the corresponding wavelet coefficients CLL,
CLH�CHL�CHH.

Step 2: Apply TV method to the LL subband and get C̃LL, i.e,

C̃LL = CLL−PG�
�CLL�

5



R E S E A R CH AR T I C L E J. Med. Imaging Health Inf. 2, 1–11, 2012

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Results of various filters on a multiplicative noise with � 2 = 0�05 original ultrasound image (liver image) given in (a) noisy image given in (b), median
filter (median) in (c), speckle reducing anisotropic diffusion filtering (srad) in (d), geometric despeckle filter (gf4d) in (e), mean and variance local statistics
despeckle filter (lsmv ) in (f), wavelet thresholding in (g), total variation despeckle filter (h), and proposed method in (i).

Step 3: Apply the wavelet thresholding method to
CLH�CHL�CHH and compute the modified wavelet C̃LH, C̃HL, C̃HH.

Step 4: Apply inverse wavelet transform on C̃LL, C̃LH, C̃HL,
C̃HH and get the reconstructed image.
Step 5: Apply TV method to reconstructed image to get the

final denoised image.

2.6. Image Quality Evaluation Metrics

To quantify the performance improvements of the speckle reduc-
tion method various measures may be used. The commonly pre-
ferred measures are mean squared error (MSE) and root mean
squared error (RMSE), signal to noise ratio (SNR), peak signal
to noise ratio (PSNR), Correlation coefficient (CoC), structural
similarity index (SSIN), because the structural similarity index
and Correlation coefficient are measure of similarity between the
original and denoised images in this paper we used (SSIN), and
universal quality index Q.8

In this paper the differences between the original, gi� j , and
the despeckled, fi� j , images were evaluated using image quality
evaluation metrics. The following measures, which are easy to
compute and have clear physical meaning, were computed:

The MSE (Mean square error):

MSE = 1

MN

M∑

i=1

N∑

j=1

�gi� j − fi� j �
2 (9)

which measures the quality change between the original and pro-
cessed image in an M ×N window.33

The signal-to-noise ratio (SNR) is given by:34

SNR = 10 log10

∑M
i=1

∑N
j=1�g

2
i� j + f 2

i� j �
∑M

i=1

∑N
j=1�gi� j − fi� j �

2
(10)

The peak SNR (PSNR) is computed using:34

PSNR =−10 log10
MSN
g2max

(11)

where g2max is the maximum intensity in the unfiltered image. The
PSNR is higher for a better-transformed image and lower for a
poorly transformed image. It measures image fidelity, which is
how closely the despeckled image resembles the original image.

The structural similarity index between two images,35 is
given by:

SSIN = �2ḡf + c1��2�gf + c2�

�ḡ2+ f̄ 2+ c1���
2
g +�2

f + c2�
� −1< SSIN < 1 (12)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Results of various filters on a multiplicative noise with � 2 = 0�05 original ultrasound image (trans-vaginal image) given in (a) noisy image given in (b),
median filter (median) in (c), speckle reducing anisotropic diffusion filtering (srad) in (d), geometric despeckle filter (gf4d) in (e), mean and variance local
statistics despeckle filter (lsmv ) in (f), wavelet thresholding in (g), total variation despeckle filter (h), and proposed method in (i).

where ḡ and f̄ represent the mean of the original and despeckled
values with their standard deviations, �g and �f , of the original
and despeckled values of the analysis window, and �gf represents
the covariance between the original and despeckled windows,
c1 = 0
01 dr and c2 = 0
03 dr , with dr = 255 representing the
dynamic range of the ultrasound images. The range of values
for the SSIN lies between −1, for bad and 1 for good similarity
between the original and despeckled images, respectively.

The mathematically defined universal quality index36 models
any distortion as a combination of three different factors: loss of
correlation, luminance distortion, and contrast distortion and is
derived as:

Q = �gf

�f �g

�
2f ḡ

�f̄ �2+ �ḡ�2
�
2�f �g

�2
f +�2

g

� −1<Q < 1 (13)

Its highest value is 1 if gi� j = fi� j ; its lowest value is −1 if
fi� j = 2ḡ−gi� j .

3. EXPERIMENTAL RESULTS
The proposed method is implemented and qualitative and quan-
titatve evaluations of the method were performed. In the qual-
itative performance evaluation study, a total of ten ultrasound

images from the IBE Tech (Giza, Egypt) database of ultrasound
images38 of different resolutions comprising different applica-
tions including abdominal, obstetrical, small parts and endocav-
ity imaging were processed and the results were evaluated by
the IBE Tech experts. In the quantitative study, ten speckle-
free ultrasound images from different sources37–41 and for dif-
ferent applications were artificially corrupted by speckle noise
with variance �2 = 0
05 using the MATLAB command “imnoise
(image, ’speckle,’ 0.05).” This value was used since it repre-
sents a practical value for speckle variance in ultrasound image
taken in clinical settings. This allows the quantitative evalua-
tion to have a gold standard or a reference image to compare
the results to. A Monte Carlo simulation with a total of ten
independent runs each with different speckle noise pattern was
performed for each image. The performance of noise removing
algorithms is measured using quantitative performance measures
such as MSE, SNR, PSNR, SSIN, and Q averaged over all runs
for same image. It should be noted that speckle free images can
be obtained using acquisition-based methods such as spatial or
frequency compounding. Here, eight examples from these quanti-
tative and qualitative studies are reported and the performance of
the new method is compared with six other techniques; namely,
median, speckle reducing anisotropic diffusion (srad), geometric

7
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Results of various filters on a multiplicative noise with � 2 = 0�05 original ultrasound image (pelvic image) given in (a) noisy image given in (b),
median filter (median) in (c), speckle reducing anisotropic diffusion filtering (srad) in (d), geometric despeckle filter (gf4d) in (e), mean and variance local
statistics despeckle filter (lsmv ) in (f), wavelet thresholding in (g), total variation despeckle filter (h), and proposed method in (i).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. Results of various filters on a multiplicative noise with � 2 = 0�05 original ultrasound image (foetal image) given in (a) noisy image given in (b), median
filter (median) in (c), speckle reducing anisotropic diffusion filtering (srad) in (d), geometric despeckle filter (gf4d) in (e), mean and variance local statistics
despeckle filter (lsmv ) in (f), wavelet thresholding in (g), total variation despeckle filter (h), and proposed method in (i).
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Fig. 12. Performance analysis graph, image quality evaluation metrics com-
puted for the liver; at statistical measurements of MSE, SNR, PSNR and
SSIN, Q; for different filter types to liver image, median filter (median)
in (1), speckle reducing anisotropic diffusion filtering (srad) in (2), geometric
despeckle filter (gf4d) in (3), mean and variance local statistics despeckle
filter (lsmv ) in (4), wavelet thresholding in (5), total variation despeckle fil-
ter (6), and proposed method in (7).

despeckle (gf 4d), mean and variance local statistics despeckle
(lsmv), wavelet thresholding, and total variation despeckle filters.
Simulation work was done on MATLAB R2008a (Mathworks,
MA) running on an Intel Core-2 Due laptop with 2 GB of RAM.

Figure 2 shows example liver image subbands LL, HL, LH
and HH obtained by wavelet decomposition using Daubechies
“db8” family of wavelets. Figure 2(a) shows the low frequency
subband LL, Figures 2(b)–(d) show the high frequency subbands
of horizontal, vertical and diagonal directions, respectively. We
can observe that most of the noise and texture are concentrated
in the three high frequency subbands.

Figure 3 shows the modified wavelet coefficients (liver image)
by our algorithm. In Figure 3, we can see that the LL subband
is well denoised by TV method without losing texture infor-
mation, and the textures in the three high frequency subbands
are well extracted from the noise by wavelet thresholding and
noise removed but edges smoothing and not preserved, after that
we apply inverse wavelet transform to four subband and get the
reconstructed image. In the last step we use TV method to get
the final denoised images. Figures 4 and 5 show sample liver and
trans-vaginal ultrasound images respectively, with speckle noise
and results of various filters including the proposed method.

The results of the qualitative assessment are shown on
Figures 4–8 for different types of images. As can be observed,
the new method offers consistent reduction of the granularity of
the speckle pattern without removing the texture or the important
edges in the images. As an example, the parts of all images where
there are blood vessels show cleaner lumen and edges with other
parts showing finer speckle. Other methods suffer from blurring
(such as (d) and (e) images in the above figures) or prominent
vessel lumen texture (such as (b), (c), (f) and (g)).

The visual results of the quantitative assessment are shown in
Figures 9–12 with their image quality evaluation metrics listed
in Tables I–IV and plotted in Figures 13–16. It can be observed
that the best visual results were obtained by the proposed method
where noise was removed and details are preserved whereas the

Table I. Image quality evaluation metrics computed for the liver; at
statistical measurements of MSE, SNR, PSNR and SSIN, Q; for different
filter types to liver image.

Image quality evaluation metrics

Filter type MSE1 SNR PSNR SSIN Q

Median 56.0896 23.6660 30.6429 0.8682 0.7270
Srad 42.3332 23.6755 31.8640 0.8925 0.7249
Gf4d 15.2928 23.6667 36.2855 0.9912 0.8681
Lsmv 33.7503 23.6668 32.8485 0.8856 0.7138
Waveltc 71.5293 21.4438 29.5858 0.7608 0.6590
TV 70.7416 23.6531 29.6335 0.8660 0.7021
Proposed method 10.0235 24.5163 45.0694 0.9914 0.8535

Notes: Bold numbers indicate the best values. 1MSE, mean square error; SNR, signal-
to-noise ratio; PSNR, peak signal to-noise; SSIN, structural similarity index; Q, universal
quality index.

Table II. Image quality evaluation metrics computed for trans-vaginal
image type; at statistical measurements of MSE, SNR, PSNR and
SSIN, Q; for different filter types to trans-vaginal image.

Image quality evaluation metrics

Filter type MSE1 SNR PSNR SSIN Q

Median 60.6296 23.8264 30.3040 0.9455 0.6793
Srad 60.1555 23.8105 30.3374 0.6953 0.6931
Gf4d 59.1392 24.0281 30.4119 0.9964 0.6362
Lsmv 58.9763 23.8275 30.4238 0.7947 0.6665
Waveltc 40.8768 23.8135 32.0167 0.8109 0.6476
TV 59.0316 23.8211 30.4206 0.4565 0.6465
Proposed method 25.0540 23.8334 34.1411 0.9478 0.6895

Notes: Bold numbers indicate the best values. 1MSE, mean square error; SNR, signal-
to-noise ratio; PSNR, peak signal to-noise; SSIN, structural similarity index; Q, universal
quality index.

Table III. Image quality evaluation metrics computed for pelvic image
type; at statistical measurements of MSE, SNR, PSNR and SSIN, Q; for
different filter types to liver image.

Image quality evaluation metrics

Filter type MSE1 SNR PSNR SSIN Q

Median 94.0337 21.6879 28.3975 0.8144 0.9732
Srad 93.8167 21.7009 28.4086 0.8754 0.9817
Gf4d 94.3365 21.6723 28.3847 0.7517 0.9766
Lsmv 94.2491 21.6876 28.3884 0.7075 0.9879
Waveltc 94.0764 21.7074 28.3950 0.8204 0.9532
TV 94.3439 21.6307 28.3975 0.6988 0.9412
Proposed method 81.9749 22.7339 28.9946 0.9061 0.9899

Notes: Bold numbers indicate the best values. 1MSE, mean square error; SNR, signal-
to-noise ratio; PSNR, peak signal to-noise; SSIN, structural similarity index; Q, universal
quality index.

Table IV. Image quality evaluation metrics computed for fetus image
type; at statistical measurements of MSE, SNR, PSNR and SSIN, Q; for
different filter types to liver image.

Image quality evaluation metrics

Filter type MSE1 SNR PSNR SSIN Q

Median 41.0023 23.7426 32.0020 0.8902 0.9947
Srad 49.9382 23.7454 31.1460 0.8811 0.9938
Gf4d 64.3220 23.7340 30.0480 0.8741 0.9940
Lsmv 77.3133 23.7402 29.2480 0.8532 0.9945
Waveltc 34.8797 23.7466 32.7060 0.8947 0.9947
TV 25.8764 23.7396 34.0020 0.8991 0.9956
Proposed method 24.1689 24.2031 34.2980 0.9201 0.9985

Notes: Bold numbers indicate the best values. 1MSE, mean square error; SNR, signal-
to-noise ratio; PSNR, peak signal to-noise; SSIN, structural similarity index; Q, universal
quality index.
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Fig. 13. Performance analysis graph, image quality evaluation metrics com-
puted for the trans-vaginal; at statistical measurements of MSE, SNR, PSNR
and SSIN, Q; for different filter types to liver image, median filter (median)
in (1), speckle reducing anisotropic diffusion filtering (srad) in (2), geometric
despeckle filter (gf4d) in (3), mean and variance local statistics despeckle
filter (lsmv ) in (4), wavelet thresholding in (5), total variation despeckle fil-
ter (6), and proposed method in (7).

results of wavelet thresholding shows blurring of edges, and those
by TV method retained most of the speckle noise. From the qual-
ity evaluation metric in the tables and plots, excellent performance
was shown for the proposed method with lower MSE and higher
SNR and PSNR and best values for the structural similarity index,
SSIN and the universal quality index, Q. Filters such as median,
lsmv, waveltc, TV, showed poorer visual results and a blurring
effect; but the filter gf4d; with best value for Q, shows better
visual results in liver image Table I, and filters srad; with best
value for Q, gf4d; with high SNR, and best value for SSIN, shows
better visual results in Trans-vaginal image in Table II. It has been
found that the proposed method is generally better in quantitative
terms as well as visual quality of the image.
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Fig. 14. Performance analysis graph, image quality evaluation metrics com-
puted for the pelvic; at statistical measurements of MSE, SNR, PSNR and
SSIN, Q; for different filter types to liver image, median filter (median)
in (1), speckle reducing anisotropic diffusion filtering (srad) in (2), geometric
despeckle filter (gf4d) in (3), mean and variance local statistics despeckle
filter (lsmv ) in (4), wavelet thresholding in (5), total variation despeckle filter
(6), and proposed method in (7).
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Fig. 15. Performance analysis graph, image quality evaluation metrics com-
puted for a fetus image; at statistical measurements of MSE, SNR, PSNR
and SSIN, Q; for different filter types to liver image, median filter (median)
in (1), speckle reducing anisotropic diffusion filtering (srad) in (2), geometric
despeckle filter (gf4d) in (3), mean and variance local statistics despeckle
filter (lsmv ) in (4), wavelet thresholding in (5), total variation despeckle filter
(6), and proposed method in (7).

4. DISCUSSION
The issue of choosing the wavelet family to use in different prob-
lems is not resolved in general. In our problem, our experiments
did not show major differences between the different wavelet fam-
ilies that we tried and we do not have conclusive evidence that
one of them is better. So, the “db8” wavelet used here can be con-
sidered as a specification to “one” working version of the method
so that there are no missing steps for complete implementation.

The experimental evaluation of the new method compared the
method to six different classes of filtering methods. Even though
hybrids of these methods exist, we preferred to compare to the
fundamental methods since our implementation of several such
hybrids did not yield good results (likely due to need for param-
eter tuning). In general, the new method was shown to preserve
edges and fine details like textures while removing the noise
as indicated by the experimental results. Initial findings show
promising results; however, further clinical work is required to
evaluate the utility of the proposed method to assess its impact
in clinical practice.

5. CONCLUSIONS
A new speckle reduction method combining the TV method and
wavelet soft thresholding is developed. The new method com-
bines the denoising property of wavelet thresholding algorithm
with the total variation model. The total variation based method
is used to denoise the low frequency wavelet subband without
losing texture, and to reduce the oscillations that may be gen-
erated around the edges when use wavelet thresholding. On the
other hand, the wavelet thresholding method is used in the high
frequency subbands where it is very efficient in representing the
smooth parts of an image and is the ability to treat different
frequency components of an image separately. The developed
method was evaluated using both qualitative and quantitative
studies and the results indicate a potential for the utility of the
new method in clinical settings.
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