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In°uenza is one of the most important emerging and reemerging infectious diseases, causing high
morbidity and mortality in communities (epidemic) and worldwide (pandemic). Here, classi¯-

cation of human vs. non-human in°uenza, and subtyping of human in°uenza viral strains virus

is done based on pro¯le hidden Markov models (HMM). The classical ways of determining

in°uenza viral subtypes depend mainly on antigenic assays, which is time-consuming and not
fully accurate. The introduced technique is much cheaper and faster, yet usually can still yield

high accuracy. Multiple sequence alignments were done for the 16 HA subtypes and 9 NA

subtypes, followed by pro¯le-HMMs models generation, calibration and evaluation using the

HMMER suite for each group. Subtyping accuracy of all HA and NA models achieved 100%,
while host classi¯cation achieved accuracies around 53% and 95.1% according to HA subtype.

Keywords: Bioinformatics; in°uenza virus; pro¯le hidden Markov model.

1. Introduction

In°uenza A viruses belong to the Orthomyxoviridae family of negative sense, single-

stranded, segmented RNA viruses. The RNA core consists of 8 gene segments.

Immunologically, the most signi¯cant surface proteins include Hemagglutinin

HA (16 subtypes) and Neuraminidase NA (9 subtypes). In°uenza A subtypes are

March 19, 2012 11:29:49am WSPC/170-JMMB 1240009 ISSN: 0219-5194
1st Reading

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Journal of Mechanics in Medicine and Biology

Vol. 12, No. 2 (2012) 1240009 (11 pages)

°c World Scienti¯c Publishing Company

DOI: 10.1142/S021951941240009X

1240009-1



traditionally identi¯ed by their HA and NA proteins.1,2 The HA and NA proteins are

integral membrane proteins and are considered as the major surface antigen of the

in°uenza virus virion. HA is responsible for binding of virions to host cell receptors

and for fusion between the virion envelope and the host cell.3 The role of NA is to free

virus particles from host cell receptors, to permit progeny virions to escape from the

cell in which they arose, and so facilitate virus spread.4 All the 16 subtypes of HA and

9 subtypes of NA are found in avian but the ¯rst three subtypes H1, H2, H3 and

recently H5, are found in human in°uenza viruses.5 The most common strains which

infect humans during the annual in°uenza season are H1N1 and H3N2.6 Swine

in°uenza is known to be caused by in°uenza A subtypes H1N1, H1N2, H3N1, and

H3N2. Rapid virus subtype identi¯cation is critical for accurate diagnosis of human

infections, e®ective response to epidemic outbreaks and global-scale surveillance of

highly pathogenic subtypes such as avian in°uenza H5N1 and H1N1 2009 virus.7 The

classical ways of subtyping in°uenza A virus for HA segments are hemagglutination

inhibition (HI) assay which are capable of distinguishing antigenic di®erences

between in°uenza even of the same subtype. However, as noted in Ref. 8, when

working with uncharacterized viruses or antibody subtypes, the library of reference

reagents required for identifying antigenically distinct in°uenza viruses and/or

antibody speci¯cities from multiple lineages of a single HA subtype requires extensive

laboratory support for the production and optimization of reagents. Another possible

method is the subtyping of HA genes by reverse transcription PCR.9 Real-time PCR

is highly speci¯c. But there are some things to be considered such as cost and time.

While the cost of primers is probably manageable, probes are very expensive. There

will be a lag time as we will have to obtain all the probes and primers and do

validation studies. A common way to ¯nd which subtype a genetic sequence belongs

to is through the BLAST search.10 However, there are issues associated with the

BLAST algorithm as described in Ref. 11. Most importantly, the BLAST result

cannot reveal important mutations that may be functionally related to the structure

and function of proteins.

Pro¯le hidden Markov models (HMMs) are statistical models of multiple sequence

alignments.12 They capture position-speci¯c information about how conserved each

column of the alignment is, and which residues are likely. Recently related studies

have been conducted to classify in°uenza virus antigenic types and hosts. An Inte-

grated approach of using decision trees and HMM for subtype prediction of human

in°uenza A virus ��� HA subtypes (H1, H2 and H3) and NA subtypes (N1 and N2)

��� has been introduced in Ref. 13. They extracted some informative positions from

decision tree algorithms in the Weka package, and then modeled into pro¯les

through hidden Markov modeling at nucleotide level, using HMMER with subtype

prediction accuracy of 88% for human subtypes. Also, they developed a web system

for accurate subtype detection of human in°uenza virus sequences only. The pre-

liminary experiment showed that this system is easy-to-use but not powerful in

identifying human in°uenza subtypes and there is no facility to use protein

sequences. Another study in Ref. 14 applied two machine learning techniques
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(decision trees and support vector machines) to identify the origin of latest pandemic

outbreak of H1N1 viral strains. Their results have shown that human and swine

groups are well distinguishable, with classi¯cation accuracy above 95% at prediction.

All sequences from HA, M, NA, NP, NS, PA, PB1, and PB2 are classi¯ed as swine

in°uenza, which means sequences in these segments are more closely related to

Swine strain. Therefore, it was suggested that the latest pandemic viral strain is of

swine origin. Finally, the most recently study discussed in Ref. 15 has applied the

feed-forward back-propagation neural network for the classi¯cation analysis of

in°uenza virus.

Our study aims to generalize and extend in°uenza subtype and host classi¯cation

to include all in°uenza A viral subtypes and host origins, by developing a prediction

tool using Pro¯le HMM at protein level, for identifying all in°uenza viral strains in

the di®erent hosts not only human. In this work, the subtype prediction achieved

100% accuracy while host origin identi¯cation achieved accuracies around 53% and

95.1% according to HA subtype.

2. Data and Methods

2.1. Data collection

All sequences were downloaded from the NCBI's (National Center for Biotechnology

Information) In°uenza Virus Resources.16 We ensured the downloaded sequences

were non-redundant and the complete isolation of HA and NA segments. Part of the

data is used for training and the remaining part is used for testing (Table 1). We used

amino acid sequences because they are known to give more reliable results than

nucleotide sequences when the sequence divergence is high.17

2.2. Multiple sequence alignment (MSA)

One of the cornerstones of modern bioinformatics is the comparison or alignment of

protein sequences. Sequences can be aligned across their entire length (global

alignment) or only in certain regions (local alignment).18 Each group of training sets

found in Table 1 was collectively aligned using Clustal X program, which supports

multiple sequence alignment for protein sequences through window graphical user

interface and built by adding the sequences sequentially to the growing MSA pro-

duced a consensus sequence representing the highly conserved regions from the

aligned sequences.19,20

2.3. Modeling using pro¯le HMM

Pro¯le HMM techniques are among the most powerful methods for protein homology

detection scoring them above the noise level.21 HMM pro¯le includes more °exible

information on a given set of sequences than a single sequence.22 Therefore, database

search methods using pro¯les is more sensitive to remote similarities than those
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based on pairwise alignments (e.g., regular BLAST). In particular, pro¯le HMM

have generated good results, and are today employed by several databases such as

Pfam and Superfamily.23,24 We divided our analysis into two main steps; pro¯le

HMM model building and database searching.

Table 1. Number of downloaded sequences used for each subtype of HA and NA segments.

HA segment Group # of training sequences # of test sequences

H1 Total H1 971 100

H1-Human 749 100
H1-Avian 105 10

H1-Swine 300 68

H2 Total H2 126 50

H2-Human 50 13
H2-Avian 124 30

H3 Total H3 814 100

H3-Human 550 69
H3-Avian 263 30

H3-Swine 100 29

H4 Total (Avian) 200 64

H5 Total H5 1500 256
H5-Human 110 33

H5-Avian 1200 184

H6 Total (Avian) 150 40

H7 Total (Avian) 200 64
H8 Total (Avian) 15 4

H9 Total H9 400 97

H9-Avian 400 42

H9-Swine 13 2
H10 Total (Avian) 40 7

H11 Total (Avian) 40 11

H12 Total (Avian) 15 4
H13 Total (Avian) 25 5

H14 Total (Avian) 10 2

H15 Total (Avian) 10 2

H16 Total (Avian) 12 4

NA segment

N1 Total N1 1500 205
N1-Human 600 56

N1-Avian 830 70

N1-Swine 100 20
N2 Total N2 1500 561

N2-Human 761 100

N2-Avian 700 124

N2-Swine 191 40
N3 Total N3 102 40

N4 Total N4 40 10

N5 Total N5 65 20

N6 Total N1 261 15
N7 Total N7 100 20

N8 Total N8 300 30

N9 Total N9 80 20
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Model building involves converting a multiple alignment of each group of

sequences into a probabilistic model, while database searching involves scoring a

sequence to the pro¯le HMM. One of the most widely used pro¯le HMM packages is

HMMER packages.

2.4. Model building

A pro¯le HMM is a probabilistic model of multiple alignments of related proteins. The

alignment is modeled using a series of nodes (roughly one per alignment column) each

composed of three states: match, insert and delete.Match and insert states emit amino

acids with probabilities learned during model estimation while delete states are quiet.

Insertions and deletions with respect to the HMM are modeled by insert and delete

states and transition probabilities to them.12 \Hmmbuild" program in HMMER

package v2.3.2 was used to build a di®erent HMM pro¯les for each subtype of HA and

NA segments; the input to \Hmmbuild" program were the pre-aligned sequences of

each group in Table 1. In order to increase the sensitivity of database search we used

\hmmcalibrate" program in HMMER to calculate the E-value. The E-value is quite

literally the expected number of false positives at this raw score; the larger the database

you search, the greater the number of expected false positives.HMMdatabase has been

built by concatenating HMM ¯les that are already built and calibrated.25

2.5. Database searching

Any sequence can be compared to a model by calculating the probability that the

sequence was generated by that model. The negative logarithm of this probability

corresponds to the NULL score calculated for a simple HMM. To score a match to

HMM we have two algorithms: Viterbi algorithm to give the probability of the most

probable alignment with the sequence or Forward algorithm to give the full prob-

ability of a sequence aligning to the pro¯le HMM.26 \Hmmsearch" program in

HMMER package searches one or more sequences against HMM pro¯le. The output

of the program is the sequence family classi¯cation top hits list, ranked by E-value.

The scores and E-values here re°ect the con¯dence that this query sequence contains

one or more domains belonging to a domain family. \HmmPfam" program Searches

an HMM database for matches to a query sequence and get score for each model.23

3. Results

Multiple sequence alignments were done for the 16HA subtypes, 9NA subtypes and 12

\HA-Host" host speci¯c subtypes, using ClustalX, followed by pro¯le-HMMs models

building, calibration and database generation using the HMMER suite for each group.

3.1. Subtyping classi¯cation results

Subtyping classi¯cation was done by scoring the entire test-sets (human) (Table 1),

with each HA and NA HMMmodels, using \HMMPfam" program in HMMER suite.
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Matches to the right HA or NA subtype were classi¯ed as true hits. Matches to a

di®erent subtype were classi¯ed as false hits. The accuracies of classi¯cation results

achieved 100%. These results are encouraging and bear great promise for application

to in°uenza virus classi¯cation. Therefore any viral strain like H1N1, H1N2, H2N2,

H3N2, H5N1 and H9N2 can by accurately classi¯ed using HMMs with 100% accu-

racy.

3.2. Host classi¯cation results

Identifying the origin of viral strains as human avian or swine has been done by

scoring the pre-identi¯ed HA subtype with the corresponding \HA-Host" HMM

models for better matching. \HMMSearch" program in HMMER suite has been used

for this classi¯cation. The test results details of host classi¯cation for di®erent HA

subtypes in terms of accuracy, sensitivity and speci¯city are summarized in Table 2.

3.3. Model evaluation using ROC analysis

In a receiver operating characteristic (ROC) curve the true positive rate (sensitivity)

is plotted in function of the false positive rate (100-speci¯city) for di®erent cut-o®

points. Each point on the ROC plot represents a sensitivity/speci¯city pair corre-

sponding to a particular decision threshold.27 The following ROC curves were drawn

using MedCalc program.28 The curves indicate the observed criterion (threshold)

values that maximized both sensitivity and speci¯city values. ROC curves for host

identi¯cation of di®erent HA subtypes are indicated in Figs 1�5.

4. Discussion

The obtained results con¯rm that pro¯le HMM can successfully be used for classi-

fying all in°uenza A stains hosted in all species in two major steps. First through

Table 2. Summary of host classi¯cation results of in°uenza A
virus using HMMs.

HA subtype Host Accuracy Sensitivity Speci¯city

H1 Human 94.4% 93.7% 95.7%
Avian 89.5% 100% 95.3%

Swine 84.5% 90.3% 82.9%

H2 Human 95.1% 100% 96%

Avian 90% 91.7% 87.5%
H3 Human 80.8% 86.9% 71.1%

Avian 90.9% 82.4% 92.7%

Swine 78.7% 71.4% 78.8%
H5 Human 53% 95.2% 43.5%

Avian 63% 58.1% 76.9%

H9 Avian 55% 46.7% 80%

Swine 90% 80% 93.3%
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Fig. 1. ROC curves for host classi¯cation results of H1-human, H1-Avian and H1-Swine using HMM.
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Fig. 2. ROC curves for host classi¯cation results of H2-human and H2-Avian using HMM.
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Fig. 3. ROC curves for host classi¯cation results of H3-human, H3-Avian and H3-Swine using HMM.
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identifying HA and NA subtypes. Second through predicting the host of origin of the

pre-identi¯ed HA subtypes, by scoring it with the corresponding \HA subtype-Host

HMM" models, searching for the best match.

For example, if a query HA sequence has been searched with each HA model

separately, and we get the highest score with H1 model for example, then the entire

sequence will be farther scored with each H1 speci¯ed host separately: H1-human,

H1-Swine and H1-Avian models searching for the highest match.
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Fig. 5. ROC curves for host classi¯cation results of H9-Avian and H9-Swine using HMM.
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Fig. 4. ROC curves for host classi¯cation results of H5-human and H5-Avian using HMM.
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All the 16 HA and 9 NA models have sensitivity of 100% and speci¯city of 100%.

Although, there are di®erences in the criteria used in Attaluri et al.'s study and this

study, their ¯ndings may support our ¯ndings that any unknown viral strain of

in°uenza A, can be easily distinguishable as they have an extensive genetic diversity

in HA and NA subtypes. Notably, our results achieved higher accuracy over Attaluri

et al.'s study.13 On the other hand, host classi¯cation of any viral sequence as human,

avian or swine varied according to HA subtype. Among HA subtypes, there were

some HAs (H1, H2, H3, H5 and H9) that can infect more than one species, through

transmission of the whole virus or ever, the reassortment between avian and human

viruses. Also, we found that some of those HA subtypes which can infect more than

one species; vary greatly between human, swine and avian viruses. While some others

vary little so it was di±cult to identify their host of origin.

By comparing our results, we found that, H2 HA models have a higher accuracy

over H1, H3, H5 and H9 HAs models. These results indicate that H2 viral subtypes

have more genetic diversity between human and avian, compared to the other

subtypes. In contrast, H5 HA models accuracies were not much higher than 53% for

H5-Human and 63% for H5-Avian. This means that, no signi¯cant di®erences can be

detected between human and avian H5 viruses using HMM.

These results agree with previous ¯ndings in Refs. 29 and 30, that highly

pathogenic avian in°uenza H5N1 virus strains can transmit directly from avian

species to humans and cause severe disease. The receptor binding preference of H5N1

viruses can be altered by only a few amino acid substitutions in the HA protein. H1

HA has accuracies of 94.4%, 84.5% and 89.5% for H1-human, H1- Swine and H1-

Avian models, respectively. The host classi¯cation of H3 HA has the accuracies of

80.8%, 78.7% and 90.9% for H3-human, H3-Swine and H3-Avian models, respec-

tively. These results seem reasonable as cross-species infections usually take place in

these subtypes, through reassortment or through whole host shift events. Never-

theless, further improvement may be required in host classi¯cation to achieve higher

accuracy. The remaining subtypes of HA are found only in avian hosts, so once they

are classi¯ed by their subtypes as H4, H6, H7, H8, H10-H16, etc. they are also

identi¯ed as having an avian host speci¯cation.

5. Conclusions

Accurate detection of in°uenza viral origin and subtyping can signi¯cantly improve

in°uenza surveillance and vaccine development. In this study, host identi¯cation and

subtyping of in°uenza A virus were done based on HMMs for each subtype and major

hosts (humans, avian, and swine). This study demonstrated the power of integrating

the multiple sequence alignment and pro¯le HMM approaches in classifying in°uenza

A viral stains and their host of origin. In conclusion, our results indicate that in°uenza

A sequences areHAandNAsubtype speci¯c andhighly sensitive againstHMMmodels

(H1-H16), (N1-N9) and can easily be predictedwith 100%accuracy.Host classi¯cation

has accuracies that vary between 53% and 95.1% according to HA subtype.
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