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Abstract— A new denoising technique for preprocessing of
P300 and Slow Cortical Potential (SCP)-based Brain computer
interface data is proposed. This new technique adaptively
removes the superimposed noise using a modified version of
spectral subtraction method. A better performance is achieved
especially when less number of electrodes is used which ac-
cordingly reduce weight and consumed power for portable BCI
applications. Classification accuracy and bitrate estimate were
used as quantitative performance measures. Results showed
better performance when compared to preprocessing without
denoising and with using the relevant and widely used wavelet
shrinkage denoising method. Results proved the practical utility
of this method and we suggest adding it to different BCI
experiments.

I. INTRODUCTION
Brain computer interfacing (BCI) is considered an impor-

tant tool used for direct communication between subject’s
brain and computer by reading the brain activity. This infor-
mation can be used to perform different actions controlled
by the subject and hence provide an extra means of com-
munication beside normal communication channels present
in normal people. Different methods including electroen-
cephalography (EEG), magnetoencephalography (MEG), and
functional magnetic resonance imaging (fMRI) can be used
to measure the brain activity at different locations. EEG-
based system provides a simple, relatively inexpensive elec-
trode cap attached to relatively small processing unit with
low signal-to-noise ratio (SNR) and at the same time it allows
subject mobility. The high levels of noise combined with
the highly variable EEG signal lead to difficult extractable
features and also decrease the information transfer rate
(bitrate). So, approaches to remove such noise and artifacts
are highly desirable to achieve better practical utility of EEG-
based BCI systems. To decrease such amount of noise and
increase the bitrate of EEG-based BCI system accordingly,
we aim to study the effect of adaptive denoising on the
accuracy of P300 as well as SCP-based BCI experiments.
The problem of improving the quality of EEG signals for BCI
applications was addressed by several research articles in past
decade. This improvement can be recognized in two broad
categories; namely, temporal domain techniques and spatial
domain techniques [1]. In the spatial domain techniques [2]
the data acquired from multiple spatially-distinct channels
are used to distinguish the true component of the signal
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projected onto all those channels from the noise which is
assumed to be totally independent among such channels.
Such methods include spatial averaging and blind source
separation methods (BSS) such as independent component
analysis (ICA) [3]–[5]. On the other hand, In temporal do-
main techniques, finding similarities within the time domain
of a channel signal is attempted to be used for identification
and suppression of noise component in that signal. Methods
ranging from averaging of signals that improves the SNR to
transform domain based techniques such as different variants
of wavelet shrinkage can be used for signal denoising [6]–
[9]. Such methods have achieved significant improvements,
but there are still different limitations that need further
research to be reduced. For example, the availability of
many electrodes (or channels) is an essential condition for
spatial domain methods, which would increase the cost,
the weight and the power consumption of a portable BCI
system. Moreover, in temporal domain techniques, signals
need to be integrated into the preprocessing chain of BCI
signals which have somewhat high computational complex-
ity. Therefore, it is highly desirable to introduce a technique
that provides the use of a small number of channels and
at the same time improves the BCI system performance
beyond the present methods. The aim of this work is to
develop a denoising method based on spectral subtraction
for P300-based and SCP-based BCI data that provides better
performance when lower number of channels are used. The
new denoising method will be applied to two different
experimental datasets, one with P300-based and another with
SCP-based, and then the classification results are compared
to that of the same datasets using the same preprocessing
and classification steps to allow direct comparison of results.
Also, the new method will be compared to a relevant and
widely used method for denoising, namely, standard wavelet
shrinkage based denoising. Classification accuracy and bit
rate will be used as quantitative performance measures for
these different experiments.

II. METHODS

The classification of P300 as well as SCP trials in EEG
data is made difficult due to the low SNR of their responses.
To overcome this problem, it is common practice to av-
erage together many consecutive trials, which effectively
diminishes the random noise, but unfortunately when more
repeated trials are required for applications such as the P300
speller and SCP-based experiments, the communication rate
is greatly reduced. Since the noise results from background
brain activity and is inherent to the EEG recording methods,
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noise reduction techniques like adaptive denoising increases
SNR and accordingly the classification accuracy of P300 and
SCP trials.

A. Theory of Adaptive Denoising

Generally speaking, we can model the EEG temporal sig-
nal as a summation of three components; a true activation re-
sponse, a physiological baseline fluctuation component, and
a random noise component [1]. The physiological baseline
fluctuation component can be considered as a deterministic
yet unknown signal such as motion artifact and can be dealt
with using existing preprocessing methods as windsorizing
[10]. On the other hand, the random noise component
comprised of two parts: the thermal noise coming from the
data acquisition system electronics which is well known to
be Gaussian white noise, and the superimposed signals from
neighboring neurons not involved in the true response at all.
The later component can be dealt with applying the central
limit theorem to the summation of many signals of random
activation patterns. Therefore, we will consider the model
of EEG temporal signal as the sum of one deterministic
component comprised of both the true activation signal and
the physiological noise and an uncorrelated stochastic one .
That is

s(t) = d(t)+n(t), (1)

As these two components are assumed to be independent,
the corresponding power spectra are related by

Pss(ω) = Pdd(ω)+Pnn(ω), (2)

where cross terms vanish because the uncorrelatedness of
these two components. Hence, we can estimate the power
spectrum of the deterministic component using the form [1]

Pdd(ω) = Pss(ω)−Pnn(ω). (3)

That is, spectral subtraction of the noisy signal power
spectrum and that of noise is used to obtain the power
spectrum of the denoised signal. In order to compute the
deterministic signal component from its power spectrum,
we should determine the magnitude and phase of Fourier
transform of the signal. The former part can be obtained as
the square root of the power spectrum, while an estimate
of the later one can be obtained from phase of the Fourier
transform of the original signal s(ω). Hence, the Fourier
transform of the processed/denoised signal sd(ω) can be
expressed as

sd(ω) =
√

Pdd(ω).exp( j.phase(s(ω))). (4)

The enhanced/denoised deterministic signal s(ω) is the real
part of the inverse Fourier transformation of this expression.
It should be noted that this method is related to the optimum
Wiener filter [11]. A block diagram for the proposed strategy
is shown in Fig. 1.

Fig. 1. Block diagram of the proposed technique.

B. Level of Denoising

We can observe from the nature of the EEG signal that
the variance in the estimate of power spectrum may only
result from the random component. Given the statistical
characteristics of the periodogram estimate and the fact that
the expected value of the noise variation is known from the
derived model, the noise at each of the power spectrum
frequency bins can be expressed as a Gaussian random
variable with mean and variance both equal to the noise
model [12], [13]. As a result, the subtraction in (3) would
not effectively remove all parts of the noise power spectrum.
To overcome this problem, we add a slight modification to
provide direct control over the level of noise removed. The
modified equation takes the form

Pdd(ω) = Pss(ω)−α.Pnn(ω). (5)

Here, we add α as a control factor of the confidence level
of noise removal. The problem of choosing the value of
this factor can be expressed when α is chosen to be the
p-value of a statistical z test. That is, when we increase the
value of α , the probability that the output power spectrum
contains a noise component will be decreased. On the other
hand, the probability of removing some parts of the signal
would increase by increasing this value. Therefore, selecting
the optimum value of α is an important issue to improve
the performance of this new technique. In this paper, we
studied the effect of several values of α and chose the
best value based on the resulted classification accuracy.
The optimization of this parameter will be left for further
investigation.

C. Practical Implementation Procedure

The practical implementation steps can be done as shown
in the block diagram Fig. 1. The noise model is obtained
from the background part of the fast Fourier transform of
the EEG signal as shown in Fig. 2. Then spectral subtrac-
tion denoising method is compared with Wavelet Shrinkage
denoising method as shown in Fig. 3.

III. EXPERIMENTAL VERIFICATION

A. P300-based Experiment

In the first part of this work, we tested the developed
denoising method using the data of Hoffmann et al. [10] and
compared it to both results of no denoising case and the case
of denoising by standard wavelet shrinkage denoising method

229



Fig. 2. Noise power spectrum estimation from the upper part of the signal
power spectrum known to have no true signal components.

Fig. 3. Illustration of the results of spectral subtraction denoising as
compared to the original signal and wavelet shrinkage denoising.

[7], [14]. We followed the same steps of preprocessing and
classification in this paper to allow a direct comparison
between the classification results of the two cases of prepro-
cessing with and without the proposed denoising technique.
For detailed description of the data set and the experiment,
refer to [10]. The effect of different electrode configurations
and machine learning algorithms on classification accuracy
was tested in an offline procedure. To estimate average
classification accuracy four-fold cross-validation was used.
The preprocessing operations applied were: referencing using
the two mastoid electrodes, bandpass filtering with cut-off
frequencies set to 1.0 Hz and 12.0 Hz using a sixth order
forward-backward Butterworth filter, downsampling by a
factor of 64, single trials were extracted, windsorizing to
remove eye blinks, eye movement and muscle activity, and
finally amplitude normalization. The number of electrodes
was selected as 4, 8, 16 or 32 depending on the experiment
with the same electrode configurations in [10]. Then, Feature
vector construction is done. The samples from the selected
electrodes were concatenated to construct the feature vectors.
The dimensionality of the feature vectors was Ne×Nt , where
Ne is the number of electrodes (selected as 4, 8, 16, or 32)
and Nt is the number of temporal samples in one trial (32
samples in our experiments). Bayesian linear discriminant
analysis (BLDA) is used as a classifier and the software
developed by [10] was used to perform this step. For the
comparison with wavelet denoising method, standard wavelet
shrinkage denoising was used using MATLAB with the
basic wavelet chosen as “Coiflet-3”as suggested by [14].
The universal threshold was selected and no multiplicative
threshold rescaling.

B. SCP-based Experiment

In this paper, we also studied the effect of adaptive
denoising on the classification accuracy of BCI competition
II experiment. For more details about the data set refer to
[15]. As we just want to test the effect of adaptive denoising
as a preprocessing step on the SCP-based experiment, we
followed the sequence of Wu Ting et al. work and compare
the results with and without the denoising step. Actually
we selected this work because their results were better than
the best results of the competition for this dataset [16]. The
feature vector is constructed as a concatenation of the average
and the energy of Wavelet Packet decomposition sub-bands.
Fisher criterion [16] was used to select the most promising
features. A four layers Probabilistic Neural Network (PNN)
was used as a classification method: one input layer, one
output layer, one hidden layer and one added layer.

IV. RESULTS AND DISCUSSION

A. Choice of Denoising Parameter α

To select the best value of α we repeated the experiment
for different denoising values of α and choose the value
which gives the best classification accuracy. Fig. 4 shows
the classification accuracy and bitrate vs. time after denoising
for four electrode configurations with different values of α .
As we can see the best value of denoising parameter α is
1000 which gives best classification accuracy (reach 100%
accuracy faster). Also this value gives the best classification
accuracy curve for other electrode configurations.

B. Classification Accuracy and Bitrate

Theoretically, adaptive denoising has a significant effect
when a small number of electrodes is used because in that
case SNR is relatively low and hence adaptive denoising is
needed too increase it. As BCI should be a real time appli-
cation, a small number of electrodes is highly recommended
to reduce the processing complexity and time consumed.
For P300-based experiment, Fig. 5 shows the classification
accuracy and bitrate versus time before denoising (blue line
for accuracy and green line for bitrate) and after denoising
(red lines) with using the most promising value of α = 1000
for subject 1 & subject 2 from disabled subjects and subject
8 & subject 9 from normal subjects. As we can see, adaptive
denoising always increases classification accuracy and bitrate

Fig. 4. The choice of the most promising α based on the value which
gives the best classification accuracy.
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Fig. 5. Classification accuracy and bitrate plotted vs. time before and after denoising for 4 electrode configuration (α = 1000) for subjects 1, 2 from
disabled subjects and subjects 8, 9 from normal subjects.

Fig. 6. Classification accuracy and bitrate plotted vs. time comparison between Wavelet and Spectral Subtraction methods for: (a) 4 electrode (b) 8
electrode, (c) 16 electrode, (d) 32 electrode configurations.

for all subjects. As a comparison with wavelet shrinkage
denoising method, spectral subtraction denoising proved a
better performance for all electrode configurations as shown
in Fig. 6 and it also proved better denoising for the EEG
signal as shown in Fig. 3. For SCP-based Experiment,
TABLE I shows results comparison for the BCI competition
III dataset. The best result of the competition was (88.7%).
After spectral subtraction denoising we got a classification
accuracy of (91.4%) which is better than the best accuracy
achieved for this data set (90.8%) [16].

TABLE I
RESULTS COMPARISON OF CLASSIFICATION ACCURACY

Method Accuracy (%)
The best result of competition 88.7
Results of Wu Ting et al. [16] 90.8

Results after Adaptive Denoising 91.4

V. CONCLUSION

In this work we introduced the theory of a new preprocess-
ing technique and studied its effect on classification accuracy
of different BCI experiments. In P300-based experiment,
results indicated that adaptive denoising has a significant
effect when small number of electrodes is used (4 and
8 electrode configurations). Adaptive denoising proved a
better performance than wavelet shrinkage denoising method.
In SCP-based experiment, classification accuracy was also
increased using this denoising method. Finally, the effect
of adaptive denoising in different experiments suggests the
potential for practical utility of the method.
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