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ABSTRACT 
The displacement estimation phase in ultrasound elastography is similar to the motion estimation problem in 

the video compression domain. Block matching can then be applied to successive ultrasound radio rrequency 
frames to get displacement fjelds. We utilize the inherent continuity in the soft tissue to apply an optimized 
version of exhaustive block matching to elasticity phantoms to generate displacement fjelds. Furthermore, we 
impose lateral continuity on displacements of each row in the reference image to remove false peaks in the 
optimized exhaustive search. Application of Linear least squares differentiation to the resultant axial displacement 
fjeld yields promising results. The resultant strain fjeld is comparable to a published result. We present 
quantitative assessment for the resulting displacement fields and the runtime of the motion estimation algorithms. 

Keywords: Ultrasound (US) elastography, motion estimation, displacement jield, block matching algorithms 

(BMAs), exhaustive search (ES), lateral continuity correction (LCC). 

I. INTRODUCTION 
Ultrasound (US) elastography has been a potential medical imaging topic for research and application for about 

20 years[l], [2]. Many variations of US elastography exist and they are mainly categorized into static and dynamic 
techniques[l], [2], [3]. We focus on static US elastography introduced by Ophir[4]. In this technique an external 
quasi-static compression is applied axially to the tissue to acquire successive RF frames. Then, pre and 
postcompression frames are compared to generate a displacement field which is further processed to get a strain 
profile (for example by applying spatial derivation). This strain profile can be used qualitatively to differentiate 
hard and soft areas even if they are isoechoec. This is possible because hard areas (which can represent lesions or 
tumors) experience less strain than soft areas. Furthermore, the inverse Hooke's law problem can be solved to get 
quantitative elasticity meaSUfes (elasticity moduli)[5]. 

Many approaches to displacement estimation in US elastography exist. Some of these approaches are based on 
windowed cross correlation [4]. Others tackle the displacement estimation as an optimization problem[6]. It can be 
noticed that this estimation problem is similar to the motion estimation phase in video compression domain (e.g. 
MPEG compression). Although some differences exist between the natUfes of the ultrasonic image and the 
photographic image[7], block matching algorithms (BMAs), used with photographic images, can be used with US 
radio frequency frames to generate displacement fields. 

In this work, we propose a modified version of one of the BMAs. This modification makes the BMA more 
oriented to work with US data. We also utilize the inherent continuity in the imaged tissue to make an optimized 
version of the previously modified BMA. This continuity criterion accounts for the axial continuity, so we add a 
lateral continuity correction step to remove false peaks along the horizontal direction and enhance the resultant 
fields. 

II.METHODS 
The general block diagram of OUf system is shown in Fig. l. For testing pUfpose we used the same phantom RF 

data in Rivaz et al. as the input to OUf algorithm[6], [8]. The B-mode images for pre and postcompression frames 
(by demodulating RF frames) are shown in Fig. 2. The RF frames were then cropped to have appropriate data size 
for testing (as shown in Fig. 2). Then, both images were input to the motion estimation algorithm. 

A. Modified Exhaustive Search (ES) 

We used one of the BMAs (commonly used in video compression domain) to estimate the displacement field 
of the precompression image. In the video compression domain, where the video is a series of frames, BMAs are 
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Fig. 1. General block Diagram of US elastography based on block matching of RF images 

based on dividing a frame into a matrix of non-overlapping square macro blocks and each block is compared with 
the corresponding block and its adjacent neighbors in the previous frame to create a vector that represents the 
movement of a macro block in the previous frame from one location to another in the current frame. This 
movement, calculated for all the macro blocks comprising a frame, constitutes the displacement fjeld. 

The search criterion between blocks is based on minimizing a cost function. The searched block that generates 
the least cost is considered the best match for the reference block. Two cost functions are frequently used due to 
their simplicity, namely Mean Absolute Difference (MAD) and Mean Squared Error (MSE) given by the following 
equations: 

(c) (d) 

Fig. 2.Phantom B-mode images. (a) Precompression. (b) Postcompression. (c) Precompression (after cropping). (d) Postcompression (after cropping). 

The size of both cropped images is 1151 * 188 pixels. The semicircular lesion can be failry seen (isoechoec with surrounding tissue). 
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whereN is the side of the macro bock, Cu and Cu are the pixels being compared in the reference macro block and 

searched macro block, respectively. The formula for the BMA is 

MAD(m,n) = 

N2-1 Nl-l 
2 2 

1 , ' IC(I+i,J+j)-G(I+i+m,]+j+n)1 N1N2 � � 
. N2-1. Nl-l 
J=--2-1=--2-

(3) 

where(m, n) is the search location(limited by the search rangep), N1andN2are the horizontal and vertical block 
dimensions respectively, (I,I) is the location of the center of the reference image block. 

For our application (US elastography),the search parameter p was initially set to 5 (the idea is represented in 
Fig. 3(a)). There are various techniques for block matching which differ in accuracy and speed[9], but we chose to 
start with the most computationally expensive, yet most accurate, algorithm - the exhaustive search (ES), to assess 
the quality of motion fields generated using BMAs with RF data. 

After compressing the imaged tissue by the probe, the distance between any locus in the tissue and the probe 
gets smaller. Consequently, every locus appears in an upper location in the postcompression image than its original 
location in the precompression image. Utilizing this, and because we were using the postcompression image as the 
reference image, we applied a modification to the ES algorithm in which we limit the search range vertically to the 
lower half of the search window (see Fig. 3(b)). We expected this modification to enhance the quality of the 
displacement field (besides enhancing speed definitely) as it should reduce false positives.We set the vertical search 
range for ES to the applied axial compression depth (as it is the upper limit) according to the following formula: 

p 

p p 

p p 

(a) (b) 

p 

(c) 
Fig. 3.ES with modifications. (a) Basic ES. (b) ES with the first modification (lower-only search). (c) ES with the two 

modifications (lower-only and less horizontal search). In all configurations p represents the vertical search range and 

Ph represents the horizontal search range (which typically should be less thanp). 
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2 x sampling freq [sample/sec] applied compression [sampies] = applied compression [m] x . d (1540) [ /  ] propagatwn spee m sec (4) 

The values of sampling freq (40 Mhz) and physical applied axial compression (0.2 inch). According to Eq. 3, 
the applied compression in sampies was 264 and thus, even if this search range theoretically should contain any 
motion vectors, getting a result using such a huge search range is hard for a serial implementation of the ES 
algorithm. 

An additional property of elastography images is that the majority of the displacement should be in the vertical 
(axial) direction due to the nature of the compression (which is axial). This let us apply an additional modification 
to the ES algorithm in which we limited the search range in the horizontal (lateral) direction (as shown in Fig. 
3(c)) where Ph is the horizontal search parameter. Typically Ph should be less than p(we set Phto 2). Again we 
expected this to further reduce false positives in addition to enhancing speed. 

B. Optimized ES (Exploiting Tissue Continuity) 

A main problem facing application of conventional ES to elastography data (even after previous two 

modifications) is that the continuity of displacement fields (as the tissue is a continuum) is not exploited by 

conventional ES. This results in noisy displacement fields with no continuity and with false peaks (especially 

when the search range is big) in addition to long search time. 

To solve this problem, it is stated in [6]that due to the continuity of motion and low value of applied strain, 

movement of adjacent regions in the RF frame should not vary significantly. We applied the same concept to the 

BM problem as follows: let that the axial displacement of location (I,])in the RF frame bedaxl (I,]), then we can 

confine the search range for the axial displacement of the lower sampie, (I,} + 1), to daxl(I,]) - 1, daxl(I,]), 

daxl (I,]) + 1. This is equivalent to limiting the search range for the lower sampleto 1 sampie in the 4 directions 

provided that the search center is now updated with the displacement of the upper sampie (i.e. the new search 

center is (!,} + 1 + daxl(I,])), not (I,] + 1)). Applying the same concept to lateral displacement, then we could 

confine the search range for displacement of location (I,} + 1), to a 3-by-3 window centered at the location 

guided by the already-estimated displacement of the adjacent (upper) sampie. This guided location is(! + 

dlat(I,]),] + 1 + daxl(I,]) ) .This idea can be expressed mathematically by changing the original formula of block 

matching fromEq. 3 to 

NZ-l � 
2 2 

MAD(m, n) = _

1
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To apply the previous idea, one should estimate the displacement field for the first row in the reference image 

then use this estimate as a basis for the lower rows. So, we didmodified ES for the first row (as no priori are found 

yet) then usedthe resultant displacement vectors to guide the search for displacements of lower sampies. 

We implemented this modification using the axial search range calculated by Eq. 3 for the first row for full 

search and using a lateral search range = 10 A-lines (empirical). 

C. Lateral Continuity Correction (LCC) 

Results of the previous correction showed that resultant displacement fields exhibit axial smoothness but not 

lateral smoothness. Examining the displacement estimates for the first row (estimated with full search) show that 

some false peaks appear. This is due to the large search region in the axial direction. Consequently, these errors 

shall propagate to the estimates of the lower rows due to the dependency in this guided technique. We tried to 

solve this problem by applying 1 D median filtration to the displacement estimates of the first row to remove the 

outliers (false detections) before proceeding to the lower rows. The result for I-by-15 median filtration applied to 
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the displacements of first row is shown in the results section. Also, we applied the same filtration but to the 

displacements of all rows in the reference image. 

IH. RESUL TS 
For qualitative assessment, the resulting vertical displacement fields (absolute values) for the modified ES, 

optimized ES, optimized ES with LCC (applied to first row and all rows) are shown in Fig.4(a-d) respectively. The 
block size used is 9-by-5 \ empirical). The strain field generated from the displacement field of the optimized ES 
with LCC (applied to all rows) using linear LSQ differentiator(as in [6]) is shown in Fig. 5(a).The strain field 
generated by [8] is also shown in Fig. 5(b) for comparison with our strain field. 

We chose a unitless measure for quantitative assessment of motion fields. That is the signal-to-noise ratio 
(SNR) defmed by the following equation: 

SNR = (6) 
(J 

wheres and (J are the spatial average and standard deviation of the displacement field. The runtime2 of the 
motion estimation block (tME), the SNR for the vertical displacement field (SNRv) are shown in Table I for the 
fourES configurations. 

IV. DISCUSSION 

Fig. 4(a) shows that modified ES does not produce a meaningful motion field. This can be understood because 
the search ranges are empirical and small, so the search window may not contain the corresponding block for the 
current reference block. Also, The modified ES does not exploit the inherent tissue continuity and thus may be 
subject to false detections. Fig. 4(b) shows that axial displacement field undergoes axial continuity after imposing 
continuity condition in this algorithm (optimized ES). Although search window for the first row of the reference 
image is larger than that for the modified ES, Table I shows that the time for the optimized ES is overall less than 
that of modified ES. This is because full search is done only for the first row, then the search region is reduced to 
3-by-3 only for the rest of the reference sampies. However, It can be seen that the axial displacement undergoes 
lateral discontinuity. The reason for this is that the large search region for the first row leads to some false peaks 
appearing in the displacement estimation of the first row. Since this estimation is used to guide the search for the 
lower row (and so on), the false peaks propagate along the axial direction. 

Although the results for the optimized ES with LCC (all rows) look promising and the SNRy for this 
configuration is the highest among the four ES configurations (as shown in Table I ),some errorsexist in the 

TABLE I. QUANTITATIVE MEASURES FOR THE DIFFERENT ES CONFIGURATIONS 

Measure Modified Optimized Optimized ES with LCC Optimized ES with 
ES ES (1" row) LCC (all rows) 

tME (s) 55.39 29.92 30.19 30.55 

SNR, 1.49 0.77 0.72 1.98 

I For USo the block height should be bigger than block width because the ultrasonic RF signal has a higher resolution in the 

axial direction than the lateral direction, and the strain generated is expected to be mainly along the axial direction. 

2 All algorithms are implemented in MATLAB 20 12a and tested on a 2.2 GHz CPU. 
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Fig. 4. Axial displaeement fields for the four ES eonfigurations. (a) modified ES. (b) Optimized ES. 

(e) Optimized ES with Lee (l51 row). (d) Optimized ES with Lee (all rows). 
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Fig. 5. Axial strain fields using linear LSQ differentiation. (a) Using displaeement field from our algorithm (Optimized ES 

with Lee (all rows)). (e) Using displaeement field from [2]. 
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displacementand strain fields (Fig. 4(d) and 5(a)). It should be considered that the median filtration used is a naIve 
empirical salt and pepper noise removal technique, and thus may not be the best choice for false peaks removal. 
Other techniques may be better for this purpose. Concerning performance, the runtime for the optimized ES with 
LCC (all rows) is nearly the same as that of the optimized ES (without LCC) despite application of median 
filtration to each row of the reference image (This is shown in Table 1). However, this performance (30 secs) is 
not yet suitable for real time applications and further performance enhancement is required. 

Many points are potential to future work. To enhance the quality of displacement and strain fields, we can 
experiment with a better technique to remove outliers from the displacement estimates of each row. This can be 
done, for example, by robust fitting of displacements to get a base curve then removing outliers based on 
difference with this baseline curve. Once the outliers are removed, we can interpolate the values of the removed 
false detections. Also, we can make the block size for ES a function of imaging parameters and we can similarly 
make the lateral search region for the first row (full search) in the optimized ES with LCC a function of imaging 
parameters and applied compression. This will be better than setting these values empirically. Clinical trials with 
more quantitative measures are needed to better assess the performance of our algorithm. 

To enhance the runtime of the algorithm, several approaches are possible. We can use non-overlapping blocks 
for the reference image (Iike the case in MPEG motion estimation) to enhance speed then interpolate the 
displacement of skipped positions. Another approach is to apply motion estimation algorithm to undersampled 
versions of the RF frames then upsample the resulting displacement fields. A third approach is to make a parallel 
implementation of the motion estimation algorithm to leverage the power of multiple CPUs and GPUs (a similar 
approach is done in [ IOD 

v. CONCLUSION 
We presented an optimized version of the ES algorithm that exploits the inherent continuity in the successive 

US images to generate displacement fields. The proposed algorithm was applied to elasticity phantom data. 
Results indicate that this direction is promising. Further future work was discussed that can enhance both the 
quality and the runtime of the optimized ES algorithm. 
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