
PC-BASED REAL-TIME DOPPLER SIGNAL PROCESSING AND
DISPLAY USING TMS320C62 AND USB INTERFACING

Karim El-Laithy, Abou-Bakr M. Youssef and Yasser M. Kadah

Biomedical Engineering Department, Cairo University, Giza, Egypt

Abstract – This study demonstrates a DSP, Digital Signal
Processor, and USB, Universal Serial Bus, based system
for Doppler signal real-time analysis. The system output
is the velocity profile of the vessel’s section under
examination. The target of the ultrasound waves is a
Doppler string phantom designed and implemented
specially for this study. DSP kit is responsible of all the
processing applied to the digitized input Doppler signal.
USB kit is responsible of transferring the processed data
blocks from the DSP kit memory to the PC memory for
display and reporting. Simultaneously, USB kit controls
the string phantom parameters to simulate certain blood
flow profiles. The results show that DSP cops with the
required processing power. However, the use of USB kit
for both data transfer and phantom control lead to poor
display at the PC.

Keywords – Doppler, DSP, USB, signal processing

I. INTRODUCTION

Doppler Ultrasound is used as a technique for non-
invasive assessment and measurement of the velocities of
moving structures inside the human body, particularly blood
flow [1]. The combination of anatomical imaging with
vascular imaging makes the use of this technique a routine
in common clinical diagnosis procedure in many areas.

The spectrogram, or velocity profile, shown in Fig
1, is a common evaluation tool for the Doppler data. It
displays as a 2D image the frequency or the corresponding
velocity versus time at a particular spatial region of interest.
The brightness of the point, or the third dimension, indicates
how many particles is moving with this velocity at the
section under examination. To calculate this spectrogram,
the data should be viewed in the frequency domain to get
red of the undesired frequency bands, and then calculate the
power spectrum. Further processing is needed to reconstruct
the filtered Doppler signal to output it as an audible signal.

The real time velocity estimation process, basically
the evaluation of the velocity profile, has a great role in the
diagnosis of the circulatory system improper functioning
especially in cardiac applications. The processing power
needed to implement such a real-time signal processing
system is quiet substantial [1]. It involves the acquisition
and processing of huge amounts of raw data to extract an
accurate estimate of the velocity. Given the variability of
velocity profiles with time especially near the heart because
of the pulsatile nature of blood circulation, the processing

time available to follow such variations is rather limited and
usually should be complete in a few milliseconds.

Fig. 1. Sample spectrogram

In a number of applications, engineers sought the

integration of the versatility of PCs in generating user-
friendly graphical interfaces. The progress in PC hardware
has added to even its most modest configurations a
formidable processing power that can be utilized for various
purposes. Among the foremost of these is its use in medical
imaging consoles and in particular ultrasound imaging.
Even though such configurations were proven sufficient for
such applications as B-mode ultrasound imaging, the
processing needed for Doppler signal processing was not
possible to implement in real-time.

DSPs proved excellence in performing stable and
huge amount of embedded signal processing with minimum
time delays [1]. Instead of attempting to create the user
interface from embedded components, it makes more sense
to combine DSP chips and PCs to complement the current
PC-based ultrasound imaging configurations. Here, we
present a report of a successful integration of this kind. In
particular, we acquire the data using an A/D converter
connected to a DSP chip where it is processed and the
desired spectrogram line is generated. Then, using a modern
USB interface, the data are transferred to the PC where it is
displayed on the screen. This study integrates all these
aspects to come out with a prototype for real-time Doppler
signal analysis.

Signal
Acquisition Windowing

FFT

DAC IFFT WMF &
DLC

Audible
Signal

Power
Spectrum

PC USB
Interface

II. SYSTEM COMPONENTS AND SETUP

 The experimental setup was designed using the
following basic components:
• DSP kit: Texas Instruments DSP Kit, C6211 Platform,

Fixed Point Precision TMS320 C6000 series [3]
• USB kit: Cypress EZ-USB kit. [4]
• PC: IBM Compatible PC, Pentium III 640 MHz, 64 MB

RAM.
• Doppler String Phantom

The system interconnections are parallel-like from the
abstract point of view. The input signal is fed into the DSP
kit via the microphone input socket as an audible signal.
Then, all the processing is applied to the raw data to extract
the features for further display. This output data are
transferred from the DSP kit to the PC for display via USB
interface. The output data is transferred from the DSP chip
to the USB interface via parallel interface with 16-bit data
word. The 16 digital lines carrying this data were taken from
the expansion slot on the DSP chip board. This slot is used
basically to connect the kit to a Daughter board. This
expansion slot is HW mirror for the EMIF, expansion
memory interface, in the DSP chip. The USB ports are 8 bit,
so the data word is read using two ports each one at a time.
Then the data are carried to the PC Memory via USB
standard interface.

 Instantaneously, the USB interface, with a stored
program on its EEPROM, was controlling the speed and
direction of the steeper motor, which is the control part of
the Doppler string phantom. However, as a detailed look,
for controlling and monitoring all these actions two more
PCs were needed for controlling the two system components
independently. The DSP chip is controlled via the TI Code
Composer Studio. The Ez-USB kit is controlled via Ez-USB
Cypress Tool Kit. But this need is not supposed to be
needed in fully developed system.

III. DOPPLER SIGNAL PROCESSING

The reflected ultrasound signal is received from the

body or the phantom under examination. This signal carry
the Doppler information, the signal with different frequency
component depends on the target velocity. The signal is
demodulated in the receiving electronics, not implemented
in this case, and output a signal carrying only the Doppler
information. As the Doppler shift is a change in the
transmitted frequency depending on the target velocity [2];
the target in this case is the Doppler string phantom or the
biological blood in the human body with max velocity of
100 cm/s and according to the Doppler shift relation [1].
Hence, the maximum frequency shift lies in the audible
range. This audible signal is fed as an input to the system,
raw material.

The output of the system is: a) the velocity profile, or
sonogram, on a PC monitor and b) an audible Doppler
signal on a loudspeaker. The data, audible signal, is fed into
the DSP chip. At this stage all the coming steps are handled
with in the DSP kit itself.
1. The analog input signal is digitized with an on board

analogue to digital converter at sampling frequency 8
KHz, which implies that, the maximum frequency
component may be contained in the signal is 4 KHz

2. Applying windowing to the data stream by taking the
data as segments that each one length is 128 samples
and sent it for further processing.

3. Apply the FFT transform to the data segment to get the
underlying frequency spectrum in the signal.

4. By setting the cutoff frequency of the WMF, wall
motion filter, and the DLC, delay line canceller, and use
it on the data from the FFT; hence the signal is free of
irrelevant components. The filters used here were
frequency domain filters.

5. Here the data flow split into two pathways, the first, is
calculating the spectrogram data by calculating the
power spectrum of the FFT data. This power spectrum
could be obtained by squaring the absolute data value
of the output from the FFT process. Second, the data is
input to the inverse Fourier transform process (IFFT) to
reconstruct the signal. This signal is carried to the
digital to analogue converter to be output as analogue
output to the audio speaker out

6. The power spectrum data is sent digitally via certain
paths in the DSP chip to be gathered by an ordinary PC
to display the results in an acceptable form.

Fig 2. Overall system overview

The digital signal processor requires basic

scheduling and I/O services to handle high-speed arithmetic,
I/O and interrupt processing. The DSP/BIOS foundation
software, included in Code Composer Studio, furnishes a
small firmware kernel with basic run-time services that
software developers can embed on target DSP hardware.
Mainly threading and scheduling along with a data pipe
managers are designed to manage block I/O (also called
stream-based or asynchronous I/O. moreover, The SWI
module manages software interrupt service routines, which
are patterned after HWI hardware interrupt routines, are

triggered programmatically through DSP/BIOS API calls,
such as SWI_post, from client threads. Once triggered,
execution of a SWI routine will strictly preempt any current
background activity within the program as well as any SWIs
of lower priority; HWI hardware interrupt routines on the
other hand take precedence over SWIs and remain enabled
during execution of all handlers, allowing timely response to
hardware peripherals with the target system. Software
interrupts or SWIs provide a range of threads that have
intermediate priority between HWI functions and the
background idle loop.

The DSP/BIOS Buffered Pipe Manager or PIP
Module manages block I/O (also called stream-based or
asynchronous I/O) used to buffer streams of program input
and output typically processed by embedded DSP
applications. Each pipe object maintains a buffer divided
into a fixed number of fixed length frames, specified by the
number of frames and frame size properties.

Fig 3. DSP/BIOS Data Pipes (PIP Module)

All I/O operations on a pipe deal with one frame at

a time. Although each frame has a fixed length, the
application may put a variable amount of data in each frame
(up to the length of the frame). Note that a pipe has two
ends. The writer end is where the program writes frames of
data. The reader end is where the program reads frames of
data.

Data notification functions (notifyReader and
notifyWriter) are performed to synchronize data transfer.
These functions are triggered when a frame of data is read
or written to notify the program that a frame is free or data
is available. These functions are performed in the context of
the function that calls PIP_free or PIP_put. They may also
be called from the thread that calls PIP_get or PIP_alloc.
After PIP_alloc is invoked, DSP/BIOS checks whether there
are more full frames in the pipe. If so, the notifyReader
function is executed. After PIP_alloc is invoked, DSP/BIOS
whether there are more empty frames in the pipe. If so, the
notifyWriter function is executed.

Fig 4. Program Flow, PIP based flow.

IV. THE DSP-USB INTERFACE

The most important registers are the EMIF global
control register and the registers associated with memory
spaces o f the expansion bus CE2 and CE3. We used the
EMIF as asynchronous 16 bit output to the out world by
setting the associated registers to the memory space and the
global control register.

The most important signals were the Asynchronous
Write Enable (AWE, Active LO) and the Chip Enable (CE,
Active LO), which are used as control signals to control the
flow of the data from the DSP kit to the USB development
kit. The AWE signal used mainly to enable the latches
(74LS373) that latch the valid data from the expansion slot
on the DSP kit to the output pins of the latches. The AWE is
a strobe signal and has a very high transition rate which
makes it so difficult to be detected and sensed, so, we take it
after buffering it by a bi-directional buffer stage via the
(74LS244). Practically we take the inverted signal of the
AWE (take it after inversion) to the buffer to match the
requirements of the latch. But for the CE signal it is mainly
generated to select the CS pins of another memory device,
so, its electrical characteristics allow for it to be detected or
sensed by another device. This signal is used in our system
to enable the acquisition by the USB to a new 16-bit sample
from the DSP.

Note that without the latches, it is almost
impossible to read from the expansion bus of the DSP kit
because of the very rapid level transition. Address decoding
may be needed if the EMIF is used to communicate with
more than one device, hence, to select the desired device,
the address generated by the 20-bit address bus on the
expansion bus could be used for this purpose.

V. DOPPLER STRING PHANTOM

The purpose of this device is to provide predefined
Doppler velocity parameters as a target for the ultrasound
beam in order to test the performance of the setup system. A
stepper motor is mounted to control the speed and the
direction of a string well tied to move around four bullies.
The USB interface was used to control the motion of the
string in fluid medium, basically water. The motor itself is
driven by four power transistor for current supply. The
logical levels out form USB kit board synchronize the four
transistors operation to provide the desired flow parameters.

Two lookup tables are stored in the EEPROM of
the USB interface for sinusoidal and Forward-Backward
flows. The stepper motor used was not designed specially
for this purpose. This limited the flow profiles that could be
implemented with it. The main problem with this motor was
the large inertia that blocked the smooth transition from one
direction to another or the rise time for maximum speed.

VI. CONCLUSIONS

 A real-time data processing system based on a
combination of an embedded DSP chip and a PC interfaced
using the standard USB interface was developed. The
system allows the calculation of Doppler velocities in a
timely manner while utilizing the PC as a versatile display
device. The improvement of the current system by
incorporating new floating point DSP chips and extending
the USB interface to its version 2.0 enables the current
system to address the most computationally demanding
tasks including color Doppler and its variants. The
simplicity and low cost of the hardware involved suggests
the possibility of making many of the high-end Doppler
system features available at a much lower price. Further
investigation of this possibility is therefore warranted given
the potential enhancement of health care delivery efficiency.

REFERENCES

[1] D. H. Evans and W. N. McDicken, Doppler Ultrasound

Physics, Instrumentation and Signal Processing, 2nd
Ed., John Wiley and Sons, New York, 2000.

[2] J. A. Jensen, Estimation of Blood Velocities Using
Ultrasound : A Signal Processing Approach,
Cambridge University Press, Cambridge, 1996.

[3] TMS320C6211 Reference Guide, Texas Instruments,
2000.

[4] USB 1.1 Interfacing Using Cypress EZ-USB chipset,
Cypress Semiconductors, 2001.

