
FPGA and VHDL



VHDL

• Hardware description language

• Used for describing digital design in 
general



Entity

• All designs are expressed in terms of 
entities. An entity is the most basic 
building block in a design. The uppermost 
level of the design is the top-level entity. If 
the design is hierarchical, then the top-
level description will have lower-level 
descriptions contained in it. These lower-
level descriptions will be lower-level 
entities contained in the top-level entity 
description.



Architecture

• All entities that can be simulated have an 
architecture description. The architecture 
describes the behavior of the entity. A 
single entity can have multiple 
architectures. One architecture might be 
behavioral while another might be a 
structural description of the design.



Configuration

• A configuration statement is used to bind a 
component instance to an entity-
architecture pair. A configuration can be 
considered like a parts list for a design. It 
describes which behavior to use for each 
entity, much like a parts list describes 
which part to use for each part in the 
design.



Package

• A package is a collection of commonly 
used data types and subprograms used in 
a design. Think of a package as a toolbox 
that contains tools used to build designs.



Driver

• This is a source on a signal. If a signal is 
driven by two sources, then when both 
sources are active, the signal will have two 
drivers.



Bus

• The term “bus” usually brings to mind a 
group of signals or a particular method of 
communication used in the design of 
hardware. In VHDL, a bus is a special kind 
of signal that may have its drivers turned 
off.



Attribute

• An attribute is data that are attached to 
VHDL objects or predefined data about 
VHDL objects. Examples are the current 
drive capability of a buffer or the maximum 
operating temperature of the device.



Generic

• A generic is VHDL’s term for a parameter 
that passes information to an entity. For 
instance, if an entity is a gate level model 
with a rise and a fall delay, values for the 
rise and fall delays could be passed into 
the entity with generics.



Process

• A process is the basic unit of execution in 
VHDL. All operations that are performed in 
a simulation of a VHDL description are 
broken into single or multiple processes.



Describing Hardware in VHDL

• VHDL Descriptions consist of primary design units and 
secondary design units. 

• The primary design units are the Entity and the Package. 

• The secondary design units are the Architecture and the 
Package Body. 

• Secondary design units are always related to a primary 
design unit. 

• Libraries are collections of primary and secondary 
design units. 

• A typical design usually contains one or more libraries of 
design units.



Entity

• A VHDL entity specifies the name of the entity, 
the ports of the entity, and entity-related 
information. 

• All designs are created using one or more 
entities.

• Example:

ENTITY mux IS

PORT ( a, b, c, d : IN BIT;

s0, s1 : IN BIT;

x, : OUT BIT);

END mux;



Architectures

• The architecture describes the underlying 
functionality of the entity and contains the 
statements that model the behavior of the 
entity. 

• An architecture is always related to an 
entity and describes the behavior of that 
entity



Architecture Example

ARCHITECTURE dataflow OF mux IS

SIGNAL select : INTEGER;

BEGIN

select <= 0 WHEN s0 = ‘0’ AND s1 = ‘0’ ELSE

1 WHEN s0 = ‘1’ AND s1 = ‘0’ ELSE

2 WHEN s0 = ‘0’ AND s1 = ‘1’ ELSE

3;

x <= a AFTER 0.5 NS WHEN select = 0 ELSE

b AFTER 0.5 NS WHEN select = 1 ELSE

c AFTER 0.5 NS WHEN select = 2 ELSE

d AFTER 0.5 NS;

END dataflow;



Concurrent Signal Assignment

• In a typical programming language such as C or C++, 
each assignment statement executes one after the other 
and in a specified order. 
– The order of execution is determined by the order of the 

statements in the source file.

• Inside a VHDL architecture, there is no specified 
ordering of the assignment statements. 
– The order of execution is solely specified by events occurring on 

signals that the assignment statements are sensitive to.

select <= 0 WHEN s0 = ‘0’ AND s1 = ‘0’ ELSE

1 WHEN s0 = ‘1’ AND s1 = ‘0’ ELSE

2 WHEN s0 = ‘0’ AND s1 = ‘1’ ELSE

3;



Event Scheduling

• The assignment to signal x does not happen instantly. 

• Each of the values assigned to signal x contain an 
AFTER clause. 

• The mechanism for delaying the new value is called 
scheduling an event. 

• By assigning port x a new value, an event was 
scheduled 0.5 nanoseconds in the future that contains 
the new value for signal x. 
– When the event matures (0.5 nanoseconds in the future), signal 

x receives the new value.

x <= a AFTER 0.5 NS WHEN select = 0



Statement Concurrency

• The first assignment is the only statement to 

execute when events occur on ports s0 and s1

• The second signal assignment statement does 

not execute unless an event on signal select 

occurs or an event occurs on ports a, b, c, d.

• The two signal assignment statements in 

architecture behave form a behavioral model, or 

architecture, for the mux entity.



Structural Designs

• Another way to write the mux design is to 
instantiate subcomponents that perform 
smaller operations of the complete model. 

• With a model as simple as the 4-input 
multiplexer that we have been using, a 
simple gate level description can be 
generated to show how components are 
described and instantiated.



Example Structural Design

ARCHITECTURE netlist OF mux IS

COMPONENT andgate

PORT(a, b, c : IN bit; c : OUT BIT);

END COMPONENT;

COMPONENT inverter

PORT(in1 : IN BIT; x : OUT BIT);

END COMPONENT;

COMPONENT orgate

PORT(a, b, c, d : IN bit; x : OUT BIT);

END COMPONENT;

SIGNAL s0_inv, s1_inv, x1, x2, x3, x4 : BIT;

BEGIN

U1 : inverter(s0, s0_inv);

U2 : inverter(s1, s1_inv);

U3 : andgate(a, s0_inv, s1_inv, x1);

U4 : andgate(b, s0, s1_inv, x2);

U5 : andgate(c, s0_inv, s1, x3);

U6 : andgate(d, s0, s1, x4);

U7 : orgate(x2 => b, x1 => a, x4 => d, x3 => c, x => x);

END netlist;



Sequential Behavior

• The third way to describe the functionality of the 
mux is to use a process statement to describe 
the functionality in an algorithmic representation.

• The architecture contains only one statement, 
called a process statement.

• It starts at the line beginning with the keyword 
PROCESS and ends with the line that contains 
END PROCESS. 

• All the statements between these two lines are 
considered part of the process statement.



ARCHITECTURE sequential OF mux IS

(a, b, c, d, s0, s1 )

VARIABLE sel : INTEGER;

BEGIN

IF s0 = ‘0’ and s1 = ‘0’ THEN

sel := 0;

ELSIF s0 = ‘1’ and s1 = ‘0’ THEN

sel := 1;

ELSIF s0 = ‘0’ and s1 = ‘0’ THEN

sel := 2;

ELSE

sel := 3;

END IF;

CASE sel IS

WHEN 0 =>

x <= a;

WHEN 1 =>

x <= b;

WHEN 2 =>

x <= c;

WHEN OTHERS =>

x <= d;

END CASE;

END PROCESS;

END sequential



Process Statements

• The process statement consists of a 
number of parts. 

– The first part is called the sensitivity list; 

– The second part is called the process 

declarative part; 

– The third is the statement part.



Sensitivity List

• The list of signals in parentheses after the 
keyword PROCESS is called the sensitivity list. 

• This list enumerates exactly which signals cause 

the process statement to be executed. 

– Here, the list consists of a, b, c, d, s0, and s1. 

• Only events on these signals cause the process 

statement to be executed.

ARCHITECTURE sequential OF mux IS

(a, b, c, d, s0, s1 )



Process Declarative Region

• The process declarative part consists of 
the area between the end of the sensitivity 
list and the keyword BEGIN. 

• Here, the declarative part contains a 
variable declaration that declares local 
variable sel. This variable is used locally 
to contain the value computed based on 
ports s0 and s1.



Process Statement Part

• The statement part of the process starts at the keyword 
BEGIN and ends at the END PROCESS line.

• All the statements enclosed by the process are 
sequential statements. 

• This means that any statements enclosed by the process 
are executed one after the other in a sequential order 
just like a typical programming language. 
– Remember that the order of the statements in the architecture 

did not make any difference; however, this is not true inside the 
process. 

– The order of execution is the order of the statements in the 
process statement.



Process Execution

• Assume that s0 changes to 0. 

• Because s0 is in the sensitivity list for the 
process statement, the process is invoked. 

• Each statement in the process is then executed 
sequentially. 

• In this example the IF statement is executed 
first followed by the CASE statment. 

• Each check that the IF statement performs is 
done sequentially starting with the first in the 
model.



Sequential Statements

• This statement will execute sequentially. Once it is 
executed, the next check of the IF statement is not 
performed. 
– Whenever a check succeeds, no other checks are done. 

• The CASE statement will evaluate the value of sel
computed earlier by the IF statement and then execute 
the appropriate statement that matches the value of sel. 
– For example, if the value of sel is 1 therefore the following 

statement will be executed:
x <= b;

• The value of port b will be assigned to port x and 
process execution will terminate because there are no 
more statements in the architecture.



Architecture Selection

• Which architecture should be used to model the mux
device?

• If the model is going to be used to drive a layout tool, 
then the structural architecture netlist is probably most 
appropriate.

• If not, behavioral and sequential are probably more 
efficient in memory space required and speed of 
execution.

• Would the modeler rather write concurrent or sequential 
VHDL code?

• Typically, modelers are more familiar with sequential 
coding styles, but concurrent statements are very 
powerful tools for writing small efficient models.



Configuration Statements

• The configuration statement maps component 
instantiations to entities. 

• With this powerful statement, the modeler can 
pick and choose which architectures are used to 
model an entity at every level in the design.

• The function of the configuration statement is to 
spell out exactly which architecture to use for 
every component instance in the model. 

• This occurs in a hierarchical fashion. The 
highest-level entity in the design needs to have 
the architecture to use specified, as well as any 
components instantiated in the design.



Example Configuration

CONFIGURATION muxcon1 OF mux IS

FOR netlist

FOR U1,U2 :

inverter USE ENTITY WORK.myinv(version1);

END FOR;

FOR U3,U4,U5,U6 : andgate USE ENTITY 
WORK.myand(version1);

END FOR;

FOR U7 : orgate USE ENTITY WORK.myor(version1);

END FOR;

END FOR;

END muxcon1;



Power of Configurations

• By compiling the entities, architectures, and the 

configuration specified earlier, you can create a 

simulatable model. 

– what if you did not want to simulate at the gate level? 

– What if you really wanted to use behavioral model
instead? 

• The power of the configuration is that you do not 

need to recompile your complete design

– you only need to recompile the new configuration.



Practical FPGAs: Spartan 3



Configurable Logic Blocks 

(CLBs)

• Contain flexible Look-Up Tables (LUTs) 
that implement logic plus storage elements 
used as flip-flops or latches. 

• CLBs perform a wide variety of logical 
functions as well as store data.



Input/Output Blocks (IOBs)

• Control the flow of data between the I/O 
pins and the internal logic of the device. 
IOBs support bidirectional data flow plus 
3-state operation. 

• Supports a variety of signal standards, 
including several high-performance 
differential standards. 

• Double Data-Rate (DDR) registers are 
included.



Block RAM

• Provides data storage in the form of 18-
Kbit dual-port blocks.



Multiplier Blocks

• accept two 18-bit binary numbers as 
inputs and calculate the product. 

• The Spartan-3A DSP family includes 
special DSP multiply-accumulate blocks.



Digital Clock Manager (DCM) 

Blocks

• Provide self-calibrating, fully digital 
solutions for distributing, delaying, 
multiplying, dividing, and phase-shifting 
clock signals.


