
CHAPTER 1
Introduction to

VHDL

The VHSIC Hardware Description Language is an industry

standard language used to describe hardware from the

abstract to the concrete level. VHDL resulted from work

done in the ’70s and early ’80s by the U.S. Department

of Defense. Its roots are in the ADA language, as will be

seen by the overall structure of VHDL as well as other

VHDL statements.

VHDL usage has risen rapidly since its inception and

is used by literally tens of thousands of engineers around

the globe to create sophisticated electronic products. This

chapter will start the process of easing the reader into

the complexities of VHDL. VHDL is a powerful language

with numerous language constructs that are capable of

describing very complex behavior. Learning all the features

of VHDL is not a simple task. Complex features will be

introduced in a simple form and then more complex usage

will be described.

1

Chapter One2

In 1986, VHDL was proposed as an IEEE standard. It went through a

number of revisions and changes until it was adopted as the IEEE 1076

standard in December 1987. The IEEE 1076-1987 standard VHDL is the

VHDL used in this book. (Appendix D contains a brief description of VHDL

1076-1993.) All the examples have been described in IEEE 1076 VHDL, and

compiled and simulated with the VHDL simulation environment from

Model Technology Inc. The synthesis examples were synthesized with the

Exemplar Logic Inc. synthesis tools.

VHDL Terms

Before we go any further, let’s define some of the terms that we use

throughout the book. These are the basic VHDL building blocks that are

used in almost every description, along with some terms that are redefined

in VHDL to mean something different to the average designer.

n Entity. All designs are expressed in terms of entities. An entity is

the most basic building block in a design. The uppermost level of

the design is the top-level entity. If the design is hierarchical, then

the top-level description will have lower-level descriptions contained

in it. These lower-level descriptions will be lower-level entities

contained in the top-level entity description.

n Architecture. All entities that can be simulated have an architec-

ture description. The architecture describes the behavior of the

entity. A single entity can have multiple architectures. One archi-

tecture might be behavioral while another might be a structural

description of the design.

n Configuration. A configuration statement is used to bind a

component instance to an entity-architecture pair. A configuration

can be considered like a parts list for a design. It describes which

behavior to use for each entity, much like a parts list describes

which part to use for each part in the design.

n Package. A package is a collection of commonly used data types

and subprograms used in a design. Think of a package as a tool-

box that contains tools used to build designs.

n Driver. This is a source on a signal. If a signal is driven by two

sources, then when both sources are active, the signal will have

two drivers.

3Introduction to VHDL

n Bus. The term “bus” usually brings to mind a group of signals or

a particular method of communication used in the design of hard-

ware. In VHDL, a bus is a special kind of signal that may have its

drivers turned off.

n Attribute. An attribute is data that are attached to VHDL objects

or predefined data about VHDL objects. Examples are the current

drive capability of a buffer or the maximum operating temperature

of the device.

n Generic. A generic is VHDL’s term for a parameter that passes

information to an entity. For instance, if an entity is a gate level

model with a rise and a fall delay, values for the rise and fall delays

could be passed into the entity with generics.

n Process. A process is the basic unit of execution in VHDL. All

operations that are performed in a simulation of a VHDL descrip-

tion are broken into single or multiple processes.

Describing Hardware in VHDL

VHDL Descriptions consist of primary design units and secondary design

units. The primary design units are the Entity and the Package. The sec-

ondary design units are the Architecture and the Package Body. Sec-

ondary design units are always related to a primary design unit. Libraries

are collections of primary and secondary design units. A typical design

usually contains one or more libraries of design units.

Entity

A VHDL entity specifies the name of the entity, the ports of the entity,

and entity-related information. All designs are created using one or more

entities.

Let’s take a look at a simple entity example:

ENTITY mux IS
PORT (a, b, c, d : IN BIT;

s0, s1 : IN BIT;
x, : OUT BIT);

END mux;

Chapter One4

The keyword ENTITY signifies that this is the start of an entity state-

ment. In the descriptions shown throughout the book, keywords of the

language and types provided with the STANDARD package are shown in

ALL CAPITAL letters. For instance, in the preceding example, the key-

words are ENTITY, IS, PORT, IN, INOUT, and so on. The standard type pro-

vided is BIT. Names of user-created objects such as mux, in the example

above, will be shown in lower case.

The name of the entity is mux. The entity has seven ports in the PORT

clause. Six ports are of mode IN and one port is of mode OUT. The four data

input ports (a, b, c, d) are of type BIT. The two multiplexer select inputs,

s0 and s1, are also of type BIT. The output port is of type BIT.

The entity describes the interface to the outside world. It specifies

the number of ports, the direction of the ports, and the type of the ports.

A lot more information can be put into the entity than is shown here,

but this gives us a foundation upon which we can build more complex

examples.

Architectures

The entity describes the interface to the VHDL model. The architec-

ture describes the underlying functionality of the entity and contains

the statements that model the behavior of the entity. An architecture is

always related to an entity and describes the behavior of that entity. An

architecture for the counter device described earlier would look like this:

ARCHITECTURE dataflow OF mux IS
SIGNAL select : INTEGER;

BEGIN
select <= 0 WHEN s0 = ‘0’ AND s1 = ‘0’ ELSE

1 WHEN s0 = ‘1’ AND s1 = ‘0’ ELSE
2 WHEN s0 = ‘0’ AND s1 = ‘1’ ELSE
3;

x <= a AFTER 0.5 NS WHEN select = 0 ELSE
b AFTER 0.5 NS WHEN select = 1 ELSE
c AFTER 0.5 NS WHEN select = 2 ELSE
d AFTER 0.5 NS;

END dataflow;

The keyword ARCHITECTURE signifies that this statement describes an

architecture for an entity. The architecture name is dataflow. The entity

the architecture is describing is called mux.

5Introduction to VHDL

The reason for the connection between the architecture and the entity

is that an entity can have multiple architectures describing the behavior of

the entity. For instance, one architecture could be a behavioral description,

and another could be a structural description.

The textual area between the keyword ARCHITECTURE and the keyword

BEGIN is where local signals and components are declared for later use.

In this example signal select is declared to be a local signal.

The statement area of the architecture starts with the keyword BEGIN.

All statements between the BEGIN and the END netlist statement are called

concurrent statements, because all the statements execute concurrently.

Concurrent Signal Assignment

In a typical programming language such as C or C++, each assignment

statement executes one after the other and in a specified order. The order

of execution is determined by the order of the statements in the source file.

Inside a VHDL architecture, there is no specified ordering of the assignment

statements. The order of execution is solely specified by events occurring

on signals that the assignment statements are sensitive to.

Examine the first assignment statement from architecture behave, as

shown here:

select <= 0 WHEN s0 = ‘0’ AND s1 = ‘0’ ELSE
1 WHEN s0 = ‘1’ AND s1 = ‘0’ ELSE
2 WHEN s0 = ‘0’ AND s1 = ‘1’ ELSE
3;

A signal assignment is identified by the symbol <=. Signal select will

get a numeric value assigned to it based on the values of s0 and s1. This

statement is executed whenever either signal s0 or signal s1 has an event

occur on it. An event on a signal is a change in the value of that signal. A

signal assignment statement is said to be sensitive to changes on any sig-

nals that are to the right of the <= symbol. This signal assignment state-

ment is sensitive to s0 and s1. The other signal assignment statement in

architecture dataflow is sensitive to signal select.

Let’s take a look at how these statements actually work. Suppose that

we have a steady-state condition where both s0 and s1 have a value of 0,

and signals a, b, c, and d currently have a value of 0. Signal x will

have a 0 value because it is assigned the value of signal a whenever signals

s0 and s1 are both 0. Now assume that we cause an event on signal a that

changes its value to 1. When this happens, the first signal assignment

Chapter One6

statement will not execute because this statement is not sensitive to

changes to signal a. This happens because signal a is not on the right

side of the operator. The second signal assignment statement will exe-

cute because it is sensitive to events on signal a. When the second signal

assignment statement executes the new value of a will be assigned to

signal x. Output port x will now change to 1.

Let’s now look at the case where signal s0 changes value. Assume that

s0 and s1 are both 0, and ports a, b, c, and d have the values 0, 1, 0,

and 1, respectively. Now let’s change the value of port s0 from 0 to 1. The

first signal assignment statement is sensitive to signal s0 and will there-

fore execute. When concurrent statements execute, the expression value

calculation will use the current values for all signals contained in it.

When the first statement executes, it computes the new value to be as-

signed to q from the current value of the signal expression on the right

side of the <= symbol. The expression value calculation uses the current

values for all signals contained in it.

With the value of s0 equal to 1 and s1 equal to 0, signal select will

receive a new value of 1. This new value of signal select will cause an

event to occur on signal select, causing the second signal assignment

statement to execute. This statement will use the new value of signal select

to assign the value of port b to port x. The new assignment will cause

port x to change from a 0 to a 1.

Event Scheduling

The assignment to signal x does not happen instantly. Each of the values

assigned to signal x contain an AFTER clause. The mechanism for delaying

the new value is called scheduling an event. By assigning port x a new

value, an event was scheduled 0.5 nanoseconds in the future that contains

the new value for signal x. When the event matures (0.5 nanoseconds in

the future), signal x receives the new value.

Statement Concurrency

The first assignment is the only statement to execute when events occur

on ports s0 or s1. The second signal assignment statement does not exe-

cute unless an event on signal select occurs or an event occurs on ports

a, b, c, d.

7Introduction to VHDL

The two signal assignment statements in architecture behave form a

behavioral model, or architecture, for the mux entity. The dataflow archi-

tecture contains no structure. There are no components instantiated in

the architecture. There is no further hierarchy, and this architecture can

be considered a leaf node in the hierarchy of the design.

Structural Designs

Another way to write the mux design is to instantiate subcomponents that

perform smaller operations of the complete model. With a model as simple

as the 4-input multiplexer that we have been using, a simple gate level

description can be generated to show how components are described and

instantiated. The architecture shown below is a structural description of

the mux entity.

ARCHITECTURE netlist OF mux IS
COMPONENT andgate

PORT(a, b, c : IN bit; c : OUT BIT);
END COMPONENT;
COMPONENT inverter

PORT(in1 : IN BIT; x : OUT BIT);
END COMPONENT;
COMPONENT orgate

PORT(a, b, c, d : IN bit; x : OUT BIT);
END COMPONENT;

SIGNAL s0_inv, s1_inv, x1, x2, x3, x4 : BIT;

BEGIN
U1 : inverter(s0, s0_inv);
U2 : inverter(s1, s1_inv);
U3 : andgate(a, s0_inv, s1_inv, x1);
U4 : andgate(b, s0, s1_inv, x2);
U5 : andgate(c, s0_inv, s1, x3);
U6 : andgate(d, s0, s1, x4);
U7 : orgate(x2 => b, x1 => a, x4 => d, x3 => c, x => x);

END netlist;

This description uses a number of lower-level components to model the

behavior of the mux device. There is an inverter component, an andgate

component and an orgate component. Each of these components is declared

in the architecture declaration section, which is between the architecture

statement and the BEGIN keyword.

A number of local signals are used to connect each of the components

to form the architecture description. These local signals are declared using

the SIGNAL declaration.

Chapter One8

The architecture statement area is located after the BEGIN keyword. In

this example are a number of component instantiation statements. These

statements are labeled U1-U7. Statement U1 is a component instantiation

statement that instantiates the inverter component. This statement con-

nects port s0 to the first port of the inverter component and signal

s0_inv to the second port of the inverter component. The effect is that

port in1 of the inverter is connected to port s0 of the mux entity, and port

x of the inverter is connected to local signal s0_inv. In this statement

the ports are connected by the order they appear in the statement.

Notice component instantiation statement U7. This statement uses the

following notation:

U7 : orgate(x2 => b, x1 => a, x4 => d, x3 => c, x => x);

This statement uses named association to match the ports and signals

to each other. For instance port x2 of the orgate is connected to port b of

the entity with the first association clause. The last instantiation clause

connects port x of the orgate component to port x of the entity. The order

of the clauses is not important. Named and ordered association can be

mixed, but it is not recommended.

Sequential Behavior

There is yet another way to describe the functionality of a mux device in

VHDL. The fact that VHDL has so many possible representations for sim-

ilar functionality is what makes learning the entire language a big task.

The third way to describe the functionality of the mux is to use a process

statement to describe the functionality in an algorithmic representation.

This is shown in architecture sequential, as shown in the following:

ARCHITECTURE sequential OF mux IS
(a, b, c, d, s0, s1)
VARIABLE sel : INTEGER;

BEGIN
IF s0 = ‘0’ and s1 = ‘0’ THEN

sel := 0;
ELSIF s0 = ‘1’ and s1 = ‘0’ THEN

sel := 1;
ELSIF s0 = ‘0’ and s1 = ‘0’ THEN

sel := 2;
ELSE

sel := 3;
END IF;
CASE sel IS

9Introduction to VHDL

WHEN 0 =>
x <= a;

WHEN 1 =>
x <= b;

WHEN 2 =>
x <= c;

WHEN OTHERS =>
x <= d;

END CASE;
END PROCESS;
END sequential;

The architecture contains only one statement, called a process state-

ment. It starts at the line beginning with the keyword PROCESS and ends

with the line that contains END PROCESS. All the statements between

these two lines are considered part of the process statement.

Process Statements

The process statement consists of a number of parts. The first part is

called the sensitivity list; the second part is called the process declarative

part; and the third is the statement part. In the preceding example, the

list of signals in parentheses after the keyword PROCESS is called the sen-

sitivity list. This list enumerates exactly which signals cause the process

statement to be executed. In this example, the list consists of a, b, c, d,

s0, and s1. Only events on these signals cause the process statement to

be executed.

Process Declarative Region

The process declarative part consists of the area between the end of the

sensitivity list and the keyword BEGIN. In this example, the declarative

part contains a variable declaration that declares local variable sel. This

variable is used locally to contain the value computed based on ports s0

and s1.

Process Statement Part

The statement part of the process starts at the keyword BEGIN and ends

at the END PROCESS line. All the statements enclosed by the process are

Chapter One10

sequential statements. This means that any statements enclosed by the

process are executed one after the other in a sequential order just like a

typical programming language. Remember that the order of the statements

in the architecture did not make any difference; however, this is not true

inside the process. The order of execution is the order of the statements

in the process statement.

Process Execution

Let’s see how this works by walking through the execution of the example

in architecture sequential, line by line. To be consistent, let’s assume

that s0 changes to 0. Because s0 is in the sensitivity list for the process

statement, the process is invoked. Each statement in the process is then

executed sequentially. In this example the IF statement is executed first

followed by the CASE statment. Each check that the IF statement performs

is done sequentially starting with the first in the model.

The first check is to see if s0 is equal to a 0. This statement fails because

s0 is equal to a 1 and s1t is equal to a 0. The signal assignment state-

ment that follows the first check will not be executed. Instead, the next

check is performed. This check succeeds and the signal assignment state-

ments following the check for s0 = 1 and s1 = 0 are executed. This

statement is shown below.

sel := 1;

Sequential Statements

This statement will execute sequentially. Once it is executed, the next

check of the IF statement is not performed. Whenever a check succeeds,

no other checks are done. The IF statement has completed and now the CASE

statement will execute. The CASE statement will evaluate the value of sel

computed earlier by the IF statement and then execute the appropriate

statement that matches the value of sel. In this example the value of sel

is 1 therefore the following statement will be executed:

x <= b;

The value of port b will be assigned to port x and process execution will

terminate because there are no more statements in the architecture.

11Introduction to VHDL

Architecture Selection

So far, three architectures have been described for one entity. Which archi-

tecture should be used to model the mux device? It depends on the accuracy

wanted and if structural information is required. If the model is going to

be used to drive a layout tool, then the structural architecture netlist is

probably most appropriate. If a structural model is not wanted for some

other reason, then a more efficient model can be used. Either of the other

two methods (architectures dataflow and sequential) are probably more

efficient in memory space required and speed of execution. How to choose

between these two methods may come down to a question of programming

style. Would the modeler rather write concurrent or sequential VHDL code?

If the modeler wants to write concurrent VHDL code, then the style of

architecture dataflow is the way to go; otherwise, architecture sequential

should be chosen. Typically, modelers are more familiar with sequen-

tial coding styles, but concurrent statements are very powerful tools for

writing small efficient models.

We will also look at yet another architecture that can be written for an

entity. This is the architecture that can be used to drive a synthesis tool.

Synthesis tools convert a Register Transfer Level (RTL) VHDL description

into an optimized gate-level description. Synthesis tools can offer greatly

enhanced productivity compared to manual methods. The synthesis

process is discussed in Chapters 9, “Synthesis” and 10, “VHDL Synthesis.”

Configuration Statements

An entity can have more than one architecture, but how does the modeler

choose which architecture to use in a given simulation? The configuration

statement maps component instantiations to entities. With this powerful

statement, the modeler can pick and choose which architectures are used

to model an entity at every level in the design.

Let’s look at a configuration statement using the netlist architecture of

the rsff entity. The following is an example configuration:

CONFIGURATION muxcon1 OF mux IS
FOR netlist

FOR U1,U2 :
inverter USE ENTITY WORK.myinv(version1);

END FOR;
FOR U3,U4,U5,U6 : andgate USE ENTITY WORK.myand(ver-
sion1);

END FOR;

Chapter One12

FOR U7 : orgate USE ENTITY WORK.myor(version1);
END FOR;

END FOR;
END muxcon1;

The function of the configuration statement is to spell out exactly

which architecture to use for every component instance in the model. This

occurs in a hierarchical fashion. The highest-level entity in the design

needs to have the architecture to use specified, as well as any components

instantiated in the design.

The preceding configuration statement reads as follows: This is a con-

figuration named muxcon1 for entity mux. Use architecture netlist as the

architecture for the topmost entity, which is mux. For the two component

instances U1 and U2 of type inverter instantiated in the netlist archi-

tecture, use entity myinv, architecture version1 from the library called

WORK. For the component instances U3-U6 of type andgate, use entity

myand, architecture version1 from library WORK. For component instance

U7 of type orgate use entity myor, architecture version1 from library

WORK. All of the entities now have architectures specified for them. Entity

mux has architecture netlist, and the other components have architectures

named version1 specified.

Power of Configurations

By compiling the entities, architectures, and the configuration specified

earlier, you can create a simulatable model. But what if you did not want

to simulate at the gate level? What if you really wanted to use architecture

BEHAVE instead? The power of the configuration is that you do not need to

recompile your complete design; you only need to recompile the new config-

uration. Following is an example configuration:

CONFIGURATION muxcon2 OF mux IS
FOR dataflow
END FOR;
END muxcon2;

This is a configuration named muxcon2 for entity mux. Use architecture

dataflow for the topmost entity, which is mux. By compiling this

configuration, the architecture dataflow is selected for entity mux in this

simulation.

This configuration is not necessary in standard VHDL, but gives the

designer the freedom to specify exactly which architecture will be used for

the entity. The default architecture used for the entity is the last one

compiled into the working library.

13Introduction to VHDL

SUMMARY

In this chapter, we have had a basic introduction to VHDL and how

it can be used to model the behavior of devices and designs. The first

example showed how a simple dataflow model in VDHL is specified. The

second example showed how a larger design can be made of smaller designs

—in this case a 4-input multiplexer was modeled using AND, OR and IN-

VERTER gates. The first example provided a structural view of VHDL.

The last example showed an algorithmic or behavioral view of the

mux. All these views of the mux successfully model the functionality of a mux

and all can be simulated with a VHDL simulator. Ultimately, however, a

designer will want to use the model to facilitate building a piece of hard-

ware. The most common use of VHDL in actually building hardware today

is through synthesis tools. Therefore, the focus of the rest of the book is

not only on the simulation of VHDL but also on the synthesis of VHDL.

