

Digital Signal Processing Midterm Exam March 2012

Solve As Much As You Can – Maximum Grade: 100 Points

Q1. Determine the output of the systems described by the following difference equations with input and initial conditions as specified: [8 Points Each]:

(a) y[n] = x[n] - 0.5 y[n-1], x[n] = u[n-1], y[-1] = 1

(b) y[n] = 2 x[n] - 0.5 x[n-1], $x[n] = \delta[n-1]$

Q2. Determine whether the following signals are periodic, and for those which are, find the fundamental period [5 Point Each]:

(a) $x(n) = \sin(100\pi n)/n$

(b) $x(n) = e^{(j 3\pi n/7)}$

(c) $x(n) = \cos(3n+0.3\pi)$

Digital Signal Processing Midterm Exam

Page 1 of 2

Q4. For each system, determine whether it is (1) linear (2) time invariant, and (3) recursive [6 Points Each]:

(a)
$$y(t) = \sum_{m=-\infty}^{\infty} x(m) \cdot e^{-2(n-m)}$$

(b) y(t) = x(2-n)

(c) y(n) = x(n+1) + 2n

(d) y(n) = n x(n) - 2 y(n-2)

Q5. Determine a suitable sampling frequency for the signals with the following Fourier transforms: [5 Points Each]:

Q6. A signal $f(t) = e^{-j(100\pi t)}$ was sampled with an ideal pulse train. Sketch the continuous-time Fourier transformation for the following values of the sampling rate and estimate the reconstructed signal using a lowpass filter with cutoff frequency of $\Omega_s/2$: [10 Points each] (a) $f_s = 1k$ Samples/s

