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Discrete-Time Signals 

• A discrete-time signal x[n] can be thought of as a real- or 
complex-valued function of the integer sample index n: 

 

 

 

▫ For discrete-time signals the independent variable is 
an integer n, the sample index, and that the value of 
the signal at n, x[n], is either real or complex 

▫ Signal is only defined at integer values n—no 
definition exists for values between the integers 

▫ Example: sampled signal: 



• Consider a sinusoidal signal: 

 

Determine an appropriate sampling period Ts and obtain 
the discrete-time signal x[n] corresponding to the largest 
allowed sampling period. 

• Solution:  

To sample x(t) so that no information is lost, the Nyquist 
sampling rate condition indicates that the sampling 
period should be:      

Discrete-Time Signals: Example 

Ts
max=0.5 

 



Periodic and Aperiodic Signals 



Periodic and Aperiodic Signals: 

Example 1 

• Consider the discrete sinusoids: 



Periodic and Aperiodic Signals: 

Example 2 

• Continuous-time sinusoids are always periodic but this is 
not true for discrete-time sinusoids 

• Consider: 



Sampling Analog Periodic Signal 



Sum of Discrete-Time Period Signals 

• The sum z[n] = x[n] + y[n] of periodic signals x[n] with 
period N1, and y[n] with period N2 is periodic if the ratio 
of periods of the summands is rational—that is, 

 

 

▫ Here p and q are integers not divisible by each other  

▫ If so, the period of z[n] is qN2 = pN1 

• Example: z[n]= sin(n+2) + cos(2n/3+1) 

▫ N1= 2, N2=3  and hence, sum is periodic with period 6 

• Example: z[n]= sin(n+2) + cos(2n/3+1) 

▫ N1=1, signal 2 is not periodic:  sum is not periodic 

 

 



Finite Energy and Finite Power 

Discrete-Time Signals  



Time Shifting, Scaling, and Even/Odd 

Discrete-Time Signals 



Even/Odd: Example 



Discrete-Time Unit-Step and Unit-

Sample Signals 



Discrete-Time Systems 

• Just as with continuous-time systems, a discrete-time 
system is a transformation of a discrete-time input signal 
x[n] into a discrete-time output signal y[n]: 



Recursive and Nonrecursive  

Discrete-Time Systems 



Discrete-Time Systems: Example 1 

• Moving-average discrete filter: 3rd-order moving-
average filter (also called a smoother since it smoothes 
out the input signal) is an FIR filter for which the input 
x[n] and the output y[n] are related by: 

 

 

• Linearity: Yes 

 

• Time Invariance: Yes 



Discrete-Time Systems: Example 2 

• Autoregressive discrete filter: The recursive 
discrete-time system represented by the first-order 
difference equation (with initial condition y[-1]): 

 

 

• Autoregressive moving average filter: 

 

 

▫ Called the autoregressive moving average given that it 
is the combination of the two systems  



Discrete-Time Systems Represented 

by Difference Equations 

• General form: 

 

 

 

• Just as in the continuous-time case, the system being 
represented by the difference equation is not LTI unless 
the initial conditions are zero and the input is causal 

• Complete response of a system represented by the 
difference equation can be shown to be composed of a 
zero-input and a zero-state responses 

 

 

 

 



Discrete Convolution 

• For LTI system with impulse response h[n], starting 
from the generic representation of x[n], 

 

 

    We can show that the output can be computed as: 

Note: Convolution is a linear operator 



Discrete Convolution: Example 

• The output of nonrecursive or FIR systems is the 
convolution sum of the input and the impulse response 
of the system: 

 

 

• Impulse response is found when  



Cascade and Parallel Connections 

(a) Cascade 

(b) Parallel 



Discrete-Time Systems: Example 

• Find the impulse response and output for x[n]=u[n] of a 
moving-averaging filter where the input is x[n] and the 
output is y[n]: 

Thus, if x[n]=u[n], then: 
y[0]= 1/3  
y[1] =2/3 
y[n] =1  for n2 



Causality of Discrete-Time Systems 

• A discrete-time system S is causal if: 

▫ Whenever the input x[n]=0, and there are no initial 
conditions, the output is y[n]=0. 

▫ The output y[n] does not depend on future inputs. 

 



Causality: Examples 

• Consider the system defined by, 

 

 

▫ Nonlinear, time invariant and Causal 

 

• Consider the moving average system defined by, 

 

 

▫ LTI and Non-Causal 



Stability of Discrete-Time Systems 

• Bounded-Input Bounded-Output (BIBO) Stability  

• An LTI discrete-time system is said to be BIBO stable if its 
impulse response h[n] is absolutely summable: 

 

 

• Notes: 

▫ Nonrecursive or FIR systems are BIBO stable. Indeed, the 
impulse response of such a system is of finite length and 
thus absolutely summable. 

▫ For a recursive or IIR system represented by a difference 
equation, to establish stability we need to find the system 
impulse response h[n] and determine whether it is 
absolutely summable or not. 



Stability: Example 

• Consider an autoregressive system 

 

Determine if the system is BIBO stable. 

System is BIBO stable 



Problem Assignments 

• Problems: 8.1, 8.3, 8.9, 8.10, 8.11, 8.12, 8.17, 8.18 

• Partial Solutions available from the student section of 
the textbook web site 


