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Discrete-Time Signals

« A discrete-time signal x[n] can be thought of as a real- or
complex-valued function of the integer sample index n:

x[.]: 27— R (C)

n  x|n]

= For discrete-time signals the independent variable is
an integer n, the sample index, and that the value of
the signal at n, x[n], is either real or complex

= Signal is only defined at integer values n—no
definition exists for values between the integers

= Example: sampled signal: |x(nTs) = x(t)|s=nT;




Discrete-Time Signals: Example

» Consider a sinusoidal signal:

x(t) = 3cos(2mnt+ m/4) —00 <t <00
Determine an appropriate sampling period T, and obtain
the discrete-time signal x[n] corresponding to the largest
allowed sampling period.

o Solution:

To sample x(t) so that no information is lost, the Nyquist
sampling rate condition indicates that the sampling
periodshoulc . 7™ _ T _; mm) T >=05

T Qmax 27

» x[n] =3 cos(2nt + 7/4)|i=0.5n = 3 cos(mn + mw/4) —00 <N < 00




Periodic and Aperiodic Signals

A discrete-time signal x|n] is periodic if
m [t is defined for all possible values of n, —oo < n < oc.
m Thereis a positive integer N, the period of x|n|, such that

x|n + kN| = x|n]

for any integer k.
Periodic discrete-time sinusoids, of period N, are of the form

2mm
x[n]=Ac05( N n—l—éi) —00 <N <00

where the discrete frequency is wp = 2m/N 1ad, for positive integers m and N, which are not divisible by
each other, and # is the phase angle.




Periodic and Aperiodic Signals:
Example 1

» Consider the discrete sinusoids:
x1|n| = 2cos(mn—m/3)

x2|n| =3sin(37n+m/2) —00 <N < 0

- W] =T = 27]? » m; land N =2 » periodic of period N} = 2

- mz::;n_2_” - m=3and N =2 » periodic of period Ny, = 2
2



Periodic and Aperiodic Signals:
Example 2

- Continuous-time sinusoids are always periodic but this is
not true for discrete-time sinusoids

« Consider: «x|n] = cos(n+m/4)

The sampled signal x[n] = x(t)|;=,1, = cos(n + 7 /4) has a discrete frequency @ = 1 rad that cannot
be expressed as 2mm/N for any integers m and N because m is an irrational number. So x[n] is not
periodic.

Since the frequency of the continuous-time signal x(t) is 2 = 1 (rad/sec), then the sampling period,
according to the Nyquist sampling rate condition, should be

T

Ts‘_:az

T

and for the sampled signal x(t)|;=,1, = cos(nTs + 7 /4) to be periodic of period N or

cos((n+ N)Ts + m/4) = cos(nT; + m/4) is necessary that NTs; = 2kn

‘ T, =2kn/N <




Sampling Analog Periodic Signal

When sampling an analog sinusoid
x(t) = Acos(2pt 4+ 6) —x0 <l <

of period Tg = 27/ R0, 2o > 0, We obtain a periodic discrete sinusoid,

2Ty
x[n] = Acos(pTsn +6) = Acos T n-+6o
0

provided that

T
<X _lo sonm
Qo 2 To N




Sum of Discrete-Time Period Signals

» The sum z[n] = x[n] + y[n] of periodic signals x[n] with
period N1, and y[n] with period N2 is periodic if the ratio
of periods of the summands is rational—that is,

N2 _»

N1 ¢

= Here p and g are integers not divisible by each other

= If so, the period of z[n] is gN2 = pN1
- Example: z[n]= sin(ntn+2) + cos(2nn/3+1)

= N1= 2, N2=3 and hence, sum is periodic with period 6
- Example: z[n]= sin(rtn+2) + cos(2n/3+1)

= N1=1, signal 2 is not periodic: sum is not periodic



Finite Energy and Finite Power
Discrete-Time Signals

For a discrete-time signal x|n|, we have the following definitions:

o0

Energy: Ey = Z |x[H]|2
H=—0C
| N
Power: P, = lim x[n]|?
. N—}oo2N+1”_Z_N|I I

m x|n]is said to have finite energy or to be square summable if e, < oc.
m x|n] is called absolutely summable if

o0

Z |x[n]] < o0

H=—0

m x|n]is said to have finite power if Py < oo.




Time Shifting, Scaling, and Even/0Odd
Discrete-Time Signals

A discrete-time signal x|n] is said to be

m Delayed by N (an integer) samples if x|n — N| is x|n| shifted to the right N samples.
m Advanced by M (an integer) samples if x[n + M| is x[n] shifted to the left M samples.
m Reflected if the variable n in x[n] is negated (i.e., x[—n]).

Even and odd discrete-time signals are defined as

x[n] iseven: <«  x|n] = x[—n]

x[n] isodd: <«  x|n] = —x|—n]

Any discrete-fime signal x[n| can be represented as the sum of an even and an odd component,

x|n] = % (x[n] +x[—n]) + % (x[n] — x[—n])

L -

- =

xe|n) xp|n]

= Xe|n| + xo|n]




R
Even/0Odd: Example

Find the even and the odd components of the discrete-time signal

x[n] = 4—n 0<n<4
|0 otherwise
(24+05n —4<n<-1
4 n=~a0
Xe[n] = 0+5(x[n] +x[—n]) » Ye[n] = 4 2—-05n 1<n<4
0 otherwise
(—2—-05n —4<n<-—1
» Xo|n| = 1 0 n=20
Xo[n] = 0.5(x[n] — x[—n]) o= 9 051 1<n<a
0 otherwise




Discrete-Time Unit-Step and Unit-
Sample Signals

The unit-step u|n] and the unit-sample §|n| discrete-time signals are defined as
1 n=0
uln| = 1
0 n<O
1 n=20
Sl =1 0 otherwise
These two signals are related as follows:
5[n) = u[n] — uln — 1]
o0 n
uln] = Z §[n—k] = Z 8|m]
k=0 m=—00
Any discrete-time signal x|n] is represented using unit-sample signals as 10
00 S s f
xln] = Y x[k]8[n — k] :
k=—00 R ri '7{')~T 0




Discrete-Time Systems

- Just as with continuous-time systems, a discrete-time

system is a transformation of a discrete-time input signal
x[n] into a discrete-time output signal y[n]:

ynl = Six[n]}

A discrete-time system S is said to be

m Linear: If for inputs x[n| and v|n] and constants a and b, it satisfies the following
m Scaling: S{ax|n]|} = aS{x[n]}
m Additivity: S{x[n] + v|n]} = S{x|n]|} + S{v|n]}
or equivalently if superposition applies—that is,
S{ax|n| + bv[n]} = aS{x|n]} + bS{v[n]}

m Time-invariant: If for an input x[n| with a corresponding output y[n] = S{x|n|}, the output corresponding
to a delayed or advanced version of x[n], x|n &= M|, is y|n = M| = S{x|n £ M|} for an integer M.




Recursive and Nonrecursive
Discrete-Time Systems

m Recursive system:

N-—1 M—1

yln] = — Z apy[n — k] + Z bmx[n — m] n=>o0
k=1 m=0

initial conditions y[—k], k=1,...,N —1

This system is also called infinite-impulse response (IIR).
m Nonrecursive system:

M-1
Ml =3 byl — m)

m=0

This system is also called finite-impulse response (FIR).




Discrete-Time Systems: Example 1

- Moving-average discrete filter: 3"9-order moving-
average filter (also called a smoother since it smoothes
out the input signal) is an FIR filter for which the input
x[n] and the output y[n] are related by:

1
ymngmmy+ﬂn—1y+ﬂn—zp

- Linearity: Yes
%[(uxl [n] + bxa[n])+(axy[n — 1] + bxa[n — 1))+ (ax[n — 2| + bxa[n — 2])| = ayy[n] + byz[n]

- Time Invariance: Yes
1 1
E(xl[n] +x1[n—1]+x[n—-2] = E{x[n—N] +x[n—N—-1]+x[n—N—2])

=y[n—N]



Discrete-Time Systems: Example 2

- Autoregressive discrete filter: The recursive
discrete-time system represented by the first-order
difference equation (with initial condition y[-1]):

y|n| = ay|n — 1] + bx[n| n>0, y[—1]
- Autoregressive moving average filter:
yIn| = 0.5y|n — 1| + x[n| + x[n — 1]

= Called the autoregressive moving average given that it
is the combination of the two systems



Discrete-Time Systems Represented
by Difference Equations

« General form:

N-1 M—1
yln] = — Z agy[n — k] + Z byx|n — m] n=>0
k=1 m=0

initial conditions y[—k], k=1,..., N -1

- Just as in the continuous-time case, the system being
represented by the difference equation is not LTI unless
the initial conditions are zero and the input is causal

- Complete response of a system represented by the
difference equation can be shown to be composed of a
zero-input and a zero-state responses

ynl = yziln] + yz[n]




Discrete Convolution

» For LTI system with impulse response h[n], starting
from the generic representation of x[n],

oC

x|n| = Z x|k|§[n — k|

k=—00

We can show that the output can be computed as:

Ml =D alklhln =kl || 7 % x|[n] = > “alk]hn — k] =) " x[n — k]h[k]
k=—00 k k
= Z x|n — m|h|m] = |x* h][n]

Note: Convolution is a linear operator




Discrete Convolution: Example

 The output of nonrecursive or FIR systems is the
convolution sum of the input and the impulse response
of the system:

N—-1
y|n] = Z bpx[n — k|
k=0

- Impulse response is found when x[n] = §[n]
N-1
hln| = Z bpé|n — k] = bod[n] + b16[n— 1]+ ---+bn_16[n — (N — 1)]
k=0



Cascade and Parallel Connections

y[n]
x[n] ——» Mn]  —— holn]
yln]
x[n] ——» haln] |—— hy[n]
(a)
k]
y[n]
x[n]
——»  ho[n]

(b)

(a) Cascade

x[n]
—

(hy* hy) [n]

(b) Parallel

x[n]
L

hy[n] + ho[n]




Discrete-Time Systems: Example

- Find the impulse response and output for x[n]=u[n] of a
moving-averaging filter where the input is x[n] and the
output is y[n]:

y|n] = l(.:nc[ﬂ] + x[n — 1| + x[n — 2])

» hin| = —(3[11] + 8|n— 1]+ 8[n — 2]

o] = (10]+x[ 1]+ x[-2]) = —J\IU]

’%

y[1] = % (x[1] + x[0] +x[-1]) = E(x[{)] +x[1]) Thus, if x[n]=u[n], then:
! . ylol=1/3

V121 = 5 (2] + 2[1] +4[0]) = S O] + x[1] +x[2]) y[1] =2/3
| y[n] =1 for n>2

v[3] = ( (3] + x[2] + x[1]) = é(x[l]+x[2]+x[3])



Causality of Discrete-Time Systems

« A discrete-time system S is causal if:

s Whenever the input x[n]=0, and there are no initial
conditions, the output is y[n]=0.

= The output y[n] does not depend on future inputs.

m An LTI discrete-time system is causal if the impulse response of the system is such that
hln] =0 n<0

m A signal x|n| is said to be causal if
x[n] =0 n<o

m For a causal LTI discrete-time system with a causal input x|n] its output y|n] is given by

n

yln] = Ex[k]h[n — k] n>0

k=0




Causality: Examples

 Consider the system defined by,

yln] = «*[n]

= Nonlinear, time invariant and Causal

- Consider the moving average system defined by,

y|n| = %(x[n + 1] 4+ x[n] 4+ x[n — 1]).

= LTI and Non-Causal




Stability of Discrete-Time Systems

« Bounded-Input Bounded-Output (BIBO) Stability

- An LTI discrete-time system is said to be BIBO stable if its
impulse response h[n] is absolutely summable:

> " Ihlk]| < oo

Ik

 Notes:

= Nonrecursive or FIR systems are BIBO stable. Indeed, the
impulse response of such a system is of finite length and
thus absolutely summable.

= For a recursive or IIR system represented by a difference
equation, to establish stability we need to find the system
impulse response h[n] and determine whether it is
absolutely summable or not.



R
Stability: Example

« Consider an autoregressive system
y|n| = 0.5y[n — 1| + x|n]
Determine if the system is BIBO stable.

o0 00

n 1
h[n] = 0.5"u|n| # Z |h[n]| = Z 0.5" = T os T 2
n=—=o0 n=0

# System is BIBO stable



Problem Assignments

- Problems: 8.1, 8.3, 8.9, 8.10, 8.11, 8.12, 8.17, 8.18

« Partial Solutions available from the student section of
the textbook web site



