

Digital Signal Processing Practice Exam

May 2012

Solve As Much As You Can - Maximum Grade: 40 Points

Q1. [2 Points] Determine the output of the systems described by the following difference equation with input and initial conditions as specified:

y[n] = x[n] - 0.5 y[n-1], x[n] = u[n-1], y[-1] = 1

Q2. [4 Point Each] Determine whether the following signals are periodic, and for those which are, find the fundamental period:

$$x[n] = \cos\left(\frac{8}{15}\pi n\right)$$
$$x[n] = \cos\left(\frac{7}{15}\pi n\right)$$

Q3. [4 Points] For the shown a discrete x(n), sketch the following signals derived from x(n):

Q4. [4 Points] Determine if this system is (a) linear, (b) time invariant, (c) causal, and (d) recursive: y(n) = x(n+1) + 2n

Q5. [3 Points] Determine the maximum sampling period that produces no aliasing for this signal:

Q6. [4 Points] A signal $f(t) = e^{-j(100\pi t)}$ was sampled with an ideal pulse train. Sketch the continuous-time Fourier transformation for sampling rate of 10k Samples/s and estimate the reconstructed signal using a lowpass filter with cutoff frequency of $\Omega_s/2$.

Q7. [2 Points] Determine the z-transform of the following signal:

$$x[n] = 2e^{-2n}u[n]$$

Q8. [2 Points] Determine the inverse z-transform of the following function:

$$F(z) = \frac{z+1}{z^2(z-1)}$$

Q9. [4 Points] Convert the following filter to discrete-time filter with $f_s = 1k$ samples/s

$$H(s) = \frac{s^2}{s^2 + \sqrt{2}s + 1}$$

Digital Signal Processing Practice Exam

Q10. [2 Points] Draw the realization of the following filter: (page 696)

$$H(z) = \frac{1 + 1.2z^{-1} + 0.2z^{-2}}{1 - 0.4z^{-1} + z^{-2} - 0.4z^{-3}}$$

Q11. [2 Points] Derive the filter transfer function X(z) of the following realization: (page 699)

Q12. (page 685)

Design a low-pass FIR filter with N = 21 to be used in filtering analog signals and that approximates the following ideal frequency response:

$$H_d(e^{j\omega}) = \begin{cases} 1 & 0 \le f \le 125 \text{ Hz} \\ 0 & \text{elsewhere in } 0 \le f \le f_s/2 \end{cases}$$

where $\omega = 2\pi f/f_s$ and $f_s = 1000$ Hz is the sampling rate. Use first a rectangular window, and then a Hamming window. Compare the designed filters.