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Problem 1:
Explain why the stated LM circuit gate/input count of 12/37 for the figure in the module document is different than the sum-total number of gates and inputs for three LM circuits shown in the figure.
Problem 2.
Complete the 4:1 mux circuit by sketching the missing wires.
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[image: image4.emf]Problem 3.
Complete the truth table and circuit sketch for a 4:1 mux. When completing the truth table, make use of don’t care’s to reduce the number of required rows.
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Problem 4.
Sketch an 8:1 mux using two 4:1 muxes and one 2:1 mux. Be sure to label all inputs and outputs.
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Problem 5:
Compete a circuit sketch to show how



F = m(0, 2, 4, 5, 6)


can be implemented using the mux shown. (Hint: prepare an entered-variable K-map). 
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Problem 6.
Complete the 3:8 decoder schematic on the right by sketching the missing wires. 
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Problem 7.
Complete the 3:8 decoder with enable schematic by sketching the missing wires.

Problem 8:
Complete the 4:16 decoder built from 4 2:4 decoders below by sketching the missing wires. Label all inputs and outputs.
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Problem 9.
Complete a sketch to show how the 3:8 decoder can be used to implement the logic equation

F = m(1, 2, 4, 6)

Decoder inputs and outputs are all asserted HIGH.
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Problem 10.
Complete the truth table. The table shows the nine decimal digits, their binary equivalents, and seven columns labeled A-G. The columns labeled A-G can be used to record when a segment must be illuminated to display a given digit. For example, in the first row corresponding to the digit '0', segments A, B, C, D, E, and F must be illuminated, so a '1' must be placed in those columns. When completed, the table can serve as a truth table for the seven-segment controller – it shows the required logic relationship between the four inputs and seven outputs. Note that in the truth table, the last six input patterns (1010 through 1111) are not associated with a decimal digit. They are therefore "illegal" inputs, so outputs can receive a “don't care” for those rows.

Problem 11:
Design a 7sd controller circuit using pencil-and-paper/schematic capture methods, or by creating a VHDL source file, your choice. If you have lots of spare time and choose schematic capture, complete the K-maps below, create a schematic in WebPack, and submit it. If you are sane and choose VHDL, leave the K-maps blank, and create and submit a VHDL source file.


Problem 12.
Complete the truth table below for a three-input priority encoder. When completing the truth table, note that if I3 is a ‘1’, it DOES NOT matter what I2, I1, or I0 are – the encoded output will be “11”. This information can result in don’t cares in the truth table, which makes the design much easier (note that X’s have been used in the truth table to indicate don’t care input conditions). When the truth table is complete, transfer the information to the K-maps using EIN as the entered-variable. Then use the K-maps to find minimal SOP equations. Note that although this is a five input, four output system, you may be able to find minimal circuits by inspecting the K-map, without resorting to the Digimin minimizer.

  

Y1SOP=____________________________        EOSOP=_____________________________
Y0SOP=____________________________        GSSOP=_____________________________

Problem 13.
Complete the truth table for a 4-bit shifter that has no enable input, no rotate input, two inputs that dictate whether the input is to be shifted 0, 1, 2, or 3 bits, a direction input, and a fill input.

Problem 14.
Complete the table below to show the numerical results from applying the indicated operation to the data shown. Opcodes are six-bit numbers defined as shown below. R = 1 for Rotate; D = 1 for Right; F is fill, and A2-A0 define the number of bits.   Show all work to be eligible for partial credit.

	R
	D
	F
	A2
	A1
	A0


	Input(Base10)
	Input(Base2/8-bit)
	Op Code
	Output(Base10)
	Output(Base2/8-bit))

	47
	00101111
	000011
	188
	10111100

	96
	
	110111
	
	

	16
	
	011001
	
	

	111
	                  
	100011
	
	

	63
	
	001111
	
	

	188
	
	110001
	
	


Problem 15. 
Modify only two characters in the code below to add a Fill bit.

[image: image3.emf]entity my_shift is

port (din: in std_logic_vector(7 downto 0);

  r, d, f, en: in std_logic;

  dout: out std_logic_vector(7 downto 0));

end my_shift;

architecture my_shift_arch of my_shift is

begin

  dout <= “00000000” when en = '0' else

     din(6 downto 0) & din(7) when (r = '1' and d = '0') else

     din(0) & din(7 downto 1) when (r = '1' and d = '1') else

     din(6 downto 0) & '0' when (r = '0' and d = '0') else

     '0' & din(7 downto 1);

end my_shift_arch;
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4:1 mux with enable truth table
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Priority encoder truth table
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_1250891204.vsd
entity my_shift is
   port (din:		in std_logic_vector (7 downto 0);
	  r, d, f, en:	in std_logic;
	  dout:		out std_logic_vector (7 downto 0));
end my_shift;

architecture my_shift_arch of my_shift is
begin
  dout <= “00000000” when en = '0' else
     din(6 downto 0) & din(7) when (r = '1' and d = '0') else
     din(0) & din(7 downto 1) when (r = '1' and d = '1') else
     din(6 downto 0) & '0' when (r = '0' and d = '0') else
     '0' & din(7 downto 1);
end my_shift_arch;
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