Electrical and Electronic Drawing

Part 1: Electronic Components

Prof. Yasser Mostafa Kadah

Basics of Electronic Components

- An electronic component is any device that handles electricity.
- Electronic components come in many different shapes and sizes, and perform different electrical functions depending upon the purpose for which they are used.
- Electronic equipment make use of a variety of components.

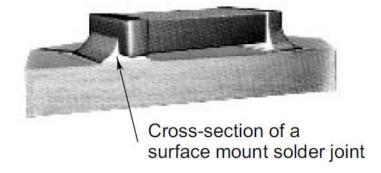
Active vs. Passive Components

Passive

- One that contributes no power gain (amplification) to a circuit or system
- No control action and does not require any input other than a signal to perform its function

Active

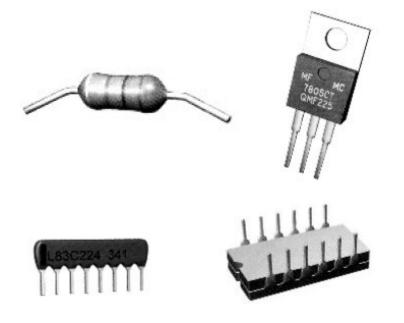

- Capable of controlling voltages or currents and can create a switching action in the circuit
- Can amplify or interpret a signal

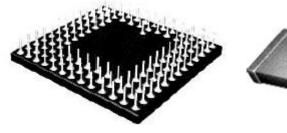

Discrete vs Integrated Circuits

- When a component is packaged with one or two functional elements, it is known as a *discrete* component
 - Examples: resistors, inductors and capacitors
- An *integrated circuit* is a combination of several interconnected discrete components packaged in a single case to perform multiple functions
 - Examples: microprocessors and OP AMPs

Component Leads

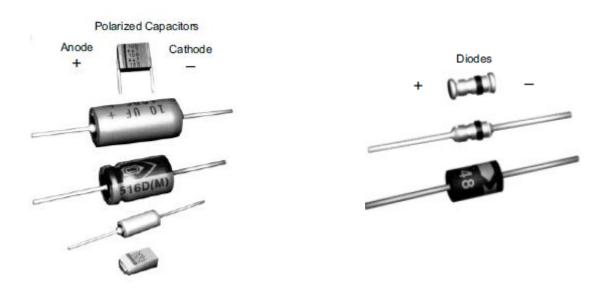
- Two types on the basis of the method of their attachment to the circuit board
 - Through-hole components
 - Surface mount components

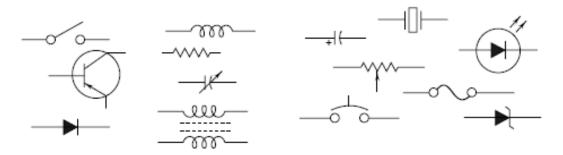




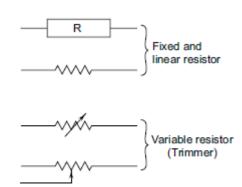
Component Leads: Examples

- Components with axial leads
- Components with radial leads
- Single-in-line package (SIL)
- Dual-inline package (DIP)
- Pin grid arrays (PGA)
- Ball grid arrays (BGA)
- Leadless components




Polarity in Components

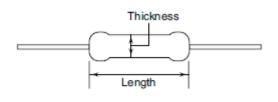
- Some components are polarized and therefore have leads which are marked with positive and negative polarity
 - Must be placed on the board in the correct orientation
 - Examples: electrolytic capacitors and diodes


Component Symbols

- Each discrete component has a specific symbol when represented on a schematic diagram
 - Standardized and specified in the IEEE standard 315
 and 315A (ANSI Y32.2)
- Integrated circuits are generally represented by a block in the schematic diagram
 - Do not have a specific symbol

Resistors

- Fixed or variable
- Carbon
 - Good in high frequency
 - Limited accuracy to 1%
 - Drift with temperature and vibration
- Metal film
 - stable under temperature and vibration
 - Reach accuracies of 0.1% in precision films
- Wire-wound Resistors
 - Very high accuracy possible

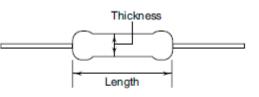


Resistors: Examples

Carbon film

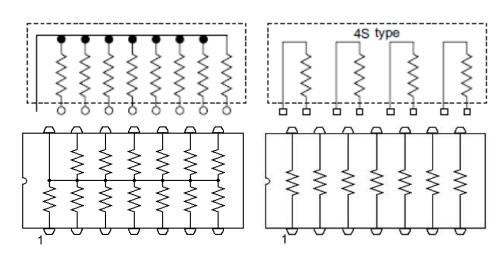
From the top of the photograph 1/8W 1/4W 1/2W

Approximate size


Rating power (W)	Thickness (mm)	Length (mm)
1/8	2	3
1/4	2	6
1/2	3	9

Metal Film

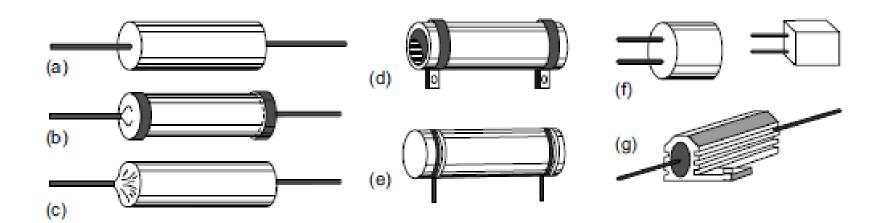
1/8W (tolerance ± 1%) 1/4W (tolerance ± 1%) 1W (tolerance ± 5%) 2W (tolerance ± 5%)



Approximate size

Rating power (W)	Thickness (mm)	Length (mm)
1/8	2	3
1/4	2	6
1	3.5	12
2	5	15

Resistors: Thick Film Networks


- precious metals in a glass binding system which have been screened on to a ceramic substrate and fired at high temperatures
 - Miniaturization and rugged construction
 - Inherently reliable, not subject to catastrophic failures
 - SIL or DIP packages

Resistors: Packages

- (a),(b),(c) Cylindrical package with axial leads
- (d), (e) Cylindrical package with radial leads
- (f) radial package with radial lead
- (g) high-power package, with axial leads and copper body for increased heat dissipation

Resistors: Characteristics

- Resistance
- Tolerance
- Power Rating
- Temperature Coefficient (hot spot temperature)
- Stability or Drift
- Noise
- Parasitic Effects
- Maximum Voltage
- Identifiation

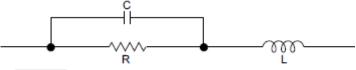
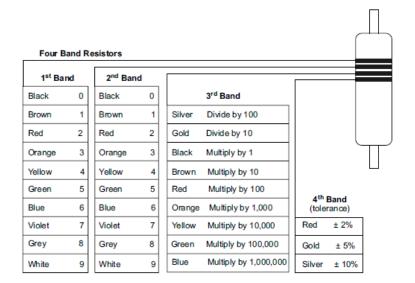
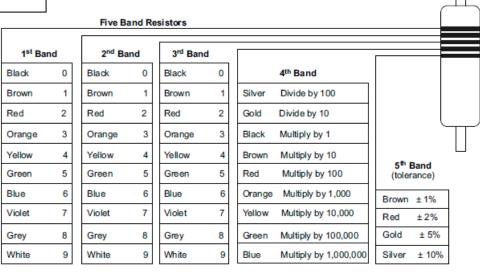


Fig. 2.10 Lumped model of a resistor C = 0.1-2 pf, L = 0.1 μ H (for a leaded component)

Resistors: Values

Code


$$F = \pm 1\%$$
 $G = \pm 2\%$ $K = \pm 10\%$ $M = \pm 20\% \pm$


R 68M is a 0.68 Ω ± 20% resistor 5K 6J is a 5.6 k Ω ± 5% resistor 82KK is 82 k Ω ± 10% resistor

 $i = \pm 5\%$

• Preferred range:

- E 12 series (common):10, 12, 15, 18, 22, 27,33, 39, 47, 56, 68, 82
- E 96 series: for ± 1%

Assignments

• Visit Digikey Corp. web site (<u>www.digikey.com</u>) and select sample 10 resistor values for different types/packages discussed in this lecture. Report the specifications (including catalog page number and picture) of each and include your comments about the cost of different types.