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First Law of Thermodynamics

� Total energy U = sum of particle 
energies
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Exchange of Energy

� Exachange forms: Work and Heat

WQU −=∆

No work – Heat added Work done – No heat flow 

(Adiabatic change)
No work – No heat flow



Exchange of Energy

� Pure heat flow involves a change in the 

average number of particles in each level

� No change in positions of levels

� Work involves a change in the macroscopic 

parameters

� Change in positions of some levels

� Change in average populations in levels

� General case: both heat flow and work

� Sum of changes due to both



Specifying Microstates and 

Macrostates

� Microstates

� quantum numbers of each particle in the 

system

� Macrostates

� All of external parameters

� Total energy of the system



Specifying Microstates and 

Macrostates

� Statistical physics: ensemble of identical 
systems

� At some instant of time, “freeze” ensemble

� “Unfreeze” then wait and repeat “freeze”

� Edgodicity:
� Equivalence of time and ensemble averages
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Basic Postulates

1. If an isolated system is found with 
equal probability in each one of its 
accessible microstates, it is in 
equilibrium
� Converse is also true

2. If it is not in equilibrium, it tends to 
change with time until it is in 
equilibrium
� Equilibrium is the most random, most 

probably state.



Thermal Equilibrium

� Idealization: system that does not interact 

with surroundings

� Adiabatic walls can never be realized

� Much can be learned by considering two 

systems that can exchange heat, work or 

particles but isolated from the rest of the 

universe

� One of them is our system and the other can be 
taken to be the rest of the universe



Thermal Equilibrium

� Consider only heat flow

� Total system A*
� Number of particles N*= N+N’

� Total energy U*= U+U’

� Two systems can exchange heat
� U and U’ may change as long as U*= const

� Barrier prevents exchange of particles or 
work
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Thermal Equilibrium

� Number of microstates
� Ω*(U)= Ω(U) × Ω’(U)

� Probability of microstate
� P(U)= Ω*(U) / Ω*tot

� Ω*tot= ΣU Ω*(U) 

� Example: system of 2 particles in A and A’
� Total energy U*=10u

� Possible energy levels for particles = 1u, 2u, ..
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Thermal Equilibrium

� Ex: U= 2u → U’= U*-U= 10u-2u= 8u

� Possible A microstates: (1u,1u)

� Ω(U)= 1

� Possible A’ microstates: (1u,7u), (2u,6u), 

(3u,5u), (4u,4u), (5u,3u), (6u,2u), (7u,1u)

� Ω’(U)= 7

� Ω*(U)= Ω(U) × Ω’(U)= 7



Thermal Equilibrium



Thermal Equilibrium

� Most probable value of U has max P(U)
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Thermal Equilibrium

� Define a quantities τ and τ’ with units 
of energy such that 

� Equilibrium at τ =τ’ ,
� related to absolute temperature 

� kB= Boltzmann const= 1.38×10-23 J K-1

� T= absolute temperature K
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Entropy

� Develop a condition for thermal 
equilibrium

� ln Ω* = ln Ω + ln Ω’

� Define entropy S as
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Entropy

� Feature #1: temperature definition

� Feature #2: entropy = sum of entropies

� Feature #3: max entropy at equilibrium
� Follows from max Ω* at equilibrium

� Feature #4: entropy change related to heat 
flow
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Assignment

� Problem assignment on web site


