Chapter 3: Systems of Many Particles – Part II

Medical Equipment I 2008-2009

First Law of Thermodynamics

 Total energy U = sum of particle energies

$$U = 2u_{23} + u_{25} + u_{26} + u_{28}$$

$$27$$

$$26$$

$$25$$

$$24$$

$$23$$

Exchange of Energy

- Pure heat flow involves a change in the average number of particles in each level
 - No change in positions of levels
- Work involves a change in the macroscopic parameters
 - Change in positions of some levels
 - Change in average populations in levels
- General case: both heat flow and work
 - Sum of changes due to both

Specifying Microstates and Macrostates

- Microstates
 - quantum numbers of each particle in the system
- Macrostates
 - All of external parameters
 - Total energy of the system

Specifying Microstates and Macrostates

- Statistical physics: ensemble of identical systems
- At some instant of time, "freeze" ensemble

 $P(\text{microstate } i) = \frac{\text{Number of systems in microstate } i}{\text{Total number of systems in the ensemble}}$

- "Unfreeze" then wait and repeat "freeze"
- Edgodicity:

Equivalence of time and ensemble averages

Basic Postulates

- 1. If an isolated system is found with equal probability in each one of its accessible microstates, it is in equilibrium
 - Converse is also true
- 2. If it is not in equilibrium, it tends to change with time until it is in equilibrium
 - Equilibrium is the most random, most probably state.

- Idealization: system that does not interact with surroundings
 - Adiabatic walls can never be realized
- Much can be learned by considering two systems that can exchange heat, work or particles but isolated from the rest of the universe
 - One of them is our system and the other can be taken to be the rest of the universe

- Consider only heat flow
- Total system A*

- Number of particles N*= N+N'
- Total energy U*= U+U'
- Two systems can exchange heat
 - \circ U and U' may change as long as U*= const
 - Barrier prevents exchange of particles or work

Number of microstates
 Ω*(U) = Ω(U) × Ω'(U)

- Probability of microstate
 - $\circ P(\mathsf{U}) = \Omega^*(\mathsf{U}) / \Omega^*_{tot}$

 $\circ \quad \Omega^*_{tot} = \Sigma_U \ \Omega^*(U)$

- Example: system of 2 particles in A and A'
 - Total energy U*=10u
 - Possible energy levels for particles = 1u, 2u, ..

- Ex: $U = 2u \rightarrow U' = U^* U = 10u 2u = 8u$
 - Possible A microstates: (1u,1u)
 - $\circ \Omega(U) = 1$
 - Possible A' microstates: (1u,7u), (2u,6u), (3u,5u), (4u,4u), (5u,3u), (6u,2u), (7u,1u)
 - \circ $\Omega'(U)=7$
 - $\circ \ \Omega^*(U) = \Omega(U) \times \Omega'(U) = 7$

System A		System A'		System A^*
U	$\overline{\Omega}$	$\overline{U'}$	Ω′	Ω^*
2u	1	$\overline{8u}$	7	7
3u	2	7u	6	12
4u	3	$\frac{6u}{-}$	5	15 16
5u	4	5u	4 9	15
$\frac{6u}{-}$	5	4u	ა ე	12
$\frac{1}{2}u$	0 7	$\frac{3u}{2u}$	2 1	7
$\mathfrak{s}u$	i	2 (t)	Ĩ	$\Omega_{\rm tot}^* = 84$

Most probable value of U has max P(U)

$$\left|\frac{d}{dU}P(U) = \frac{d}{dU}\left[\frac{\Omega^*(U)}{\Omega^*_{tot}}\right] = \frac{1}{\Omega^*_{tot}}\frac{d}{dU}\left[\Omega^*(U)\right] = 0$$

$$\Omega^*(U) = \Omega(U) \cdot \Omega'(U^* - U)$$

$$\frac{d\Omega^{*}(U)}{dU} = 0 = \Omega\Omega' \left(\frac{1}{\Omega} \frac{d\Omega}{dU} - \frac{1}{\Omega'} \frac{d\Omega'}{dU'} \right)$$

\neq 0 = 0 for equilibrium

Define a quantities τ and τ' with units of energy such that

$$\frac{1}{\tau} \equiv \frac{1}{\Omega} \frac{d\Omega}{dU}$$
 and $\frac{1}{\tau'} \equiv \frac{1}{\Omega'} \frac{d\Omega'}{dU'}$

• Equilibrium at $\tau = \tau'$,

o related to absolute temperature

$$\tau = k_{B}T$$

- k_B = Boltzmann const = 1.38 × 10⁻²³ J K⁻¹
- T= absolute temperature K

Entropy

 Develop a condition for thermal equilibrium

 $\circ \ln \Omega^* = \ln \Omega + \ln \Omega'$

$$\frac{1}{\tau} \equiv \frac{d}{dU} (\ln \Omega)$$

• Define entropy *S* as $S = k_B \ln \Omega$

$$\Omega = e^{S/k_B}$$

Entropy

Feature #1: temperature definition

dS	\underline{k}_{B}	_ 1
dU	$\overline{\tau}$	\overline{T}

- Feature #2: entropy = sum of entropies $S^* = S + S'$
- Feature #3: max entropy at equilibrium
 Follows from max Ω* at equilibrium
- Feature #4: entropy change related to heat flow

Problem assignment on web site