Chapter 3: Systems of Many Particles – Part III

Medical Equipment I 2008-2009

Two isolated systems
 In thermal contact

- Let system A be a single particle
- Let system A' be a large system
 "reservoir"
- Transfer of energy → Number of microstates in A and A' change

• Ratio of number of states \equiv G

- Consider system A has two different energies U_r and U_s
- Reservoir A' is very large
 - Its temperature T' remains the same
 - Has many energy levels
- Recall that $P(U) = \Omega^*(U) / \Omega^*_{tot}$
- Recall that $\Omega^*(U) = \Omega(U) \cdot \Omega'(U^* U)$

Then,

$$\frac{P(U_s)}{P(U_r)} = \frac{\Omega^*(U_s)}{\Omega^*(U_r)} = \frac{\Omega(U_s) \cdot \Omega'(U^* - U_s)}{\Omega(U_r) \cdot \Omega'(U^* - U_r)}$$

Let

$$G = \frac{\Omega(U_s)}{\Omega(U_r)} \quad \text{and} \quad R = \frac{\Omega'(U^* - U_s)}{\Omega'(U^* - U_r)}$$

Recall that

$$\frac{1}{\tau} = \frac{1}{\Omega} \frac{d\Omega}{dU} \text{ and } \frac{1}{\tau'} = \frac{1}{\Omega'} \frac{d\Omega'}{dU'}$$

- Equilibrium at $\tau = \tau'$,
 - o related to absolute temperature

$$\tau' = k_B T'$$

- k_B = Boltzmann const = 1.38 × 10⁻²³ J K⁻¹
- T= absolute temperature K
- Consider solving the above equation for Ω '
 - o T' is constant

$$\frac{1}{\Omega'} \left(\frac{d\Omega'}{dU'} \right) = \frac{1}{k_B T'} \Longrightarrow \frac{d\Omega'}{dU'} = \left(\frac{1}{k_B T'} \right) \Omega'$$

Then, $\Omega'(U') = \text{constant} \times e^{U'/k_BT'}$ Hence, at equilibrium T = T'

$$R = \frac{\operatorname{constant} \times e^{(U^* - U_s)/k_B T'}}{\operatorname{constant} \times e^{(U^* - U_r)/k_B T'}} = e^{-(U_s - U_r)/k_B T}$$

- R is called the "Boltzmann factor"
 - Factor by which the number of microstates in the reservoir decreases when the reservoir gives up energy U_s-U_r
- Relative probability of finding system A with energy U_r or U_s is given by

$$\frac{P(U_s)}{P(U_r)} = G \cdot R = \left[\frac{\Omega(U_s)}{\Omega(U_r)}\right] \cdot e^{-(U_s - U_r)/k_B T}$$

- *G* factor: "density of states factor"
 - Property of the system
 - Ex: single atom with discrete energy levels, G=1
 - Degeneracy: G may be different

Example 1: Nernst Equation

Concentration of ions on the two sides of a semi-permeable membrane and its relation to the voltage across the membrane

Nernst Equation

• $U = E_k + E_p (E_k \text{ is the same})$ • Potential energy is $E_p = zev$

Since R=N

Nernst

Equation

$$N_A K_B \text{ and } F = N_A e$$

$$v_2 - v_1 = \frac{RT}{zF} \ln\left(\frac{C_1}{C_2}\right)$$

Example 2: Pressure variation in the atmosphere

- Atmospheric pressure decreases with altitude
- Potential energy: gravitational = m×g×y

$$\frac{C(y)}{C(0)} = e^{-mgy/k_BT}$$

Problem assignment on web site