

- **Flow rate, volume** *flux* or volume current (*i*)
	- Total volume of material transported per unit time
	- \bigcirc \circ Units: m³s⁻¹
- Mass <u>flux</u>
- **Particle** flux

Particle *fluence*

- Number of particles transported per unit area across an imaginary surface
- \bigcirc \circ Units: m⁻²
- Volume <u>fluence</u>
	- Number of particles transported per unit area across an imaginary surface

 \bigcirc \circ Units: m³m⁻² = m

- **Filuence rate or flux density**
	- o Amount of "something" transported across an imaginary surface per unit area per unit time
	- o Vector pointing in the direction the "something" moves and is denoted by **j**
	- \bigcirc o Units: "something" m⁻²s⁻¹
	- \bigcirc Subscript to denote what "something" is

TABLE 4.1. Units and names for j and jS in various fields.

Continuity Equation: 1D

- We deal with substances that do not "appear" or "disappear"
	- Conserved
- Conservation of mass leads to the derivation of the continuity equation

Continuity Equation: 1D

- Consider the case of a number of particles \bigcirc Fluence rate: j particles/unit area/unit time
- Value of j may depend on position in tube and time

 \circ $j = j(x,t)$

Let volume of paricles in the volume shown to be $N(x,t)$

 \bigcirc Change after $\Delta t = \Delta N$

Similarly, increase in N(x,t) is,

$$
\Delta N(x,t) = N(x,t+\Delta t) - N(x,t) = \frac{\partial N}{\partial t} \Delta t
$$

Then, the continuity equation in 1D is,

$$
\left| \frac{\partial C}{\partial t} = -\frac{\partial j}{\partial x} \right|
$$

■ 3D: Integral form

■ 3D: Differential form

$$
\left|\frac{\partial C}{\partial t} = -\text{div } j_m\right|
$$

Drift or Solvent Drag

- One simple way the solute particles can move is to drift with constant velocity
	- Uniform electric or gravitational field
	- o Carried along by solvent
- Solute fluence rate **js**_s is given by,

$$
\mathbf{j}_{\mathrm{s}}=C\cdot\mathbf{j}_{\mathrm{v}}
$$

Brownian Motion

- **Application of thermal equilibrium at** temperature T
- **Kinetic energy in 1D** = $k_{B}T/2$ *B*
- **Kinetic energy in 3D** = $3k_BT/2$ *B*
- **Random motion** \longrightarrow \rightarrow mean velocity *v*=0
	- \circ can only deal with mean-square velocity v^2 *v*

$$
\frac{1}{2}mv^2 = \frac{3k_B T}{2} \Rightarrow v_{rms} = \sqrt{v^2} = \sqrt{\frac{3k_B T}{m}}
$$

Brownian Motion

TABLE 4.2. Values of the rms velocity for various particles at body temperature.

- **Brownian motion of particles: collisions**
- Mean Free Path
	- o Average distance between successive collisions
- Collision Time
	- o Average time between successive collisions

- **Consider** $N(x)$ **to be number of** particles without collision after a distance *x*
- For short distances dx , probability of collision is proprtional to dx

$$
dN = N(x) \left(\frac{1}{\lambda}\right) dx \longrightarrow \boxed{N(x) = N_0 e^{-x/\lambda}}
$$

 \mathbb{R}^n Average distance = mean free path

$$
\bar{x} = \frac{1}{N_o} \int_0^\infty x \frac{N(x)}{\lambda} dx = -\lambda \left[e^{-x/\lambda} \left(\frac{x}{\lambda} + 1 \right) \right]_0^\infty = \lambda
$$

Similar argument can be made for time

$$
N(x) = N_0 e^{-x/t_c}
$$

 \bigcirc \circ Collision time = t_c

- **Need to evaluate** λ **and** t_c
- **Consider one particle moving with a radius a**₁
- **Consider stationary particles with radius** a_2

■ After moving a distance x, volume covered is given by,

$$
V(x) = \pi (a_1 + a_2)^2 x
$$

- On average, when a particle travels mean free path, there is one collision
	- \bigcirc \circ Average number of particles in $V(\lambda)=1$

 \circ Concentration = 1/V(λ)

 $a_1 + a_2^2$ $\subset C$ *CVaa* $\pi(a+a)^2$ $1 \cdot \mathbf{u}_2$ 2 $1 \cdot \mathbf{u}_2$ 2 $(a_1 + a_2)$ 1 $1/V(\lambda) = 1/\pi (a_1 + a_2)^2 \lambda \Rightarrow \lambda =$ $(\lambda) = 1/$ $(a_1 + a_2)^2 \lambda \Rightarrow \lambda = \frac{\pi(a_1 + a_2)^2 \lambda}{\pi(a_2 + a_1)^2}$ ==+ \Longrightarrow \curlywedge $=$ π $\mathcal{\lambda}$ ` π λ λ

- Collision *Cross Section* is o Important for radiation interaction 2 $\pi(a_1 + a_2)$
- Example: gas at STP, volume of 1 mol = 22.4 L (C= 2.7×10²⁵m⁻³), a₁=a₂=0.15 nm

 \circ λ =0.13 μ m \circ

- \bigcirc 1000 times the molecular diameter
- o Assumption of infrequent collisions justified

 \mathbb{R}^2 **Given mean free path** λ ,

$$
t_c = \frac{\lambda}{\overline{\nu}}
$$

Taking the average speed as v_{rms} ,

$$
t_c \approx \lambda \left(\frac{m}{3k_B T}\right)^{1/2}
$$

- \bigcirc \circ Dependence on m^{1/2} and λ
- \circ For air and room temperature, t_c = 2×10⁻¹⁰s \overline{O}

Motion in a Liquid

- Direct substitution in Gas equations?
- **For water,**
	- \circ λ =a=0.1 nm $\;\rightarrow$ → assumption broken
	- $\hspace{10pt}\circ \hspace{10pt} t_c$ ∼ $\sim 10^{-13}$ S \longrightarrow → much more frequent
…latione
	- o Wrong calculations

Problem Assignments

 $\frac{1}{2}$ Information posted on web site■ Problems 1,4,5,6