

- Flow rate, volume <u>flux</u> or volume current (i)
 - Total volume of material transported per unit time
 - Units: m³s⁻¹
- Mass <u>flux</u>
- Particle <u>flux</u>

Particle <u>fluence</u>

- Number of particles transported per unit area across an imaginary surface
- Units: m⁻²
- Volume <u>fluence</u>
 - Number of particles transported per unit area across an imaginary surface

• Units: $m^3m^{-2} = m$

- Fluence rate or flux density
 - Amount of "something" transported across an imaginary surface per unit area per unit time
 - Vector pointing in the direction the "something" moves and is denoted by j
 - Units: "something" m⁻²s⁻¹
 - Subscript to denote what "something" is

TABLE 4.1. Units and names for j and jS in various fields.

			jS	
	Units	Names	Units	Names
Particles	$m^{-2} s^{-1}$	Particle fluence rate Particle current density Particle flux density Particle flux	s^{-1}	Particle flux Particle current Particle flux
Electric charge	${\rm C~m^{-2}~s^{-1}}$ or A ${\rm m^{-2}}$	Current density	${\rm C~s^{-1}}$ or A	Current
Mass	$\rm kg \ m^{-2} \ s^{-1}$	Mass fluence rate Mass flux density Mass flux	$\rm kg~s^{-1}$	Mass flux Mass flow
Energy	$J m^{-2} s^{-1} \text{ or } W m^{-2}$	Energy fluence rate Intensity Energy flux	$\rm J~s^{-1}~or~W$	Energy flux Power

Continuity Equation: 1D

- We deal with substances that do not "appear" or "disappear"
 - o Conserved
- Conservation of mass leads to the derivation of the continuity equation

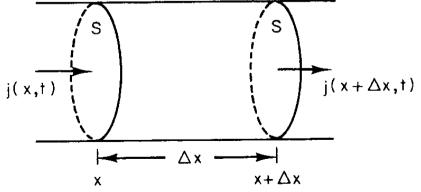
Continuity Equation: 1D

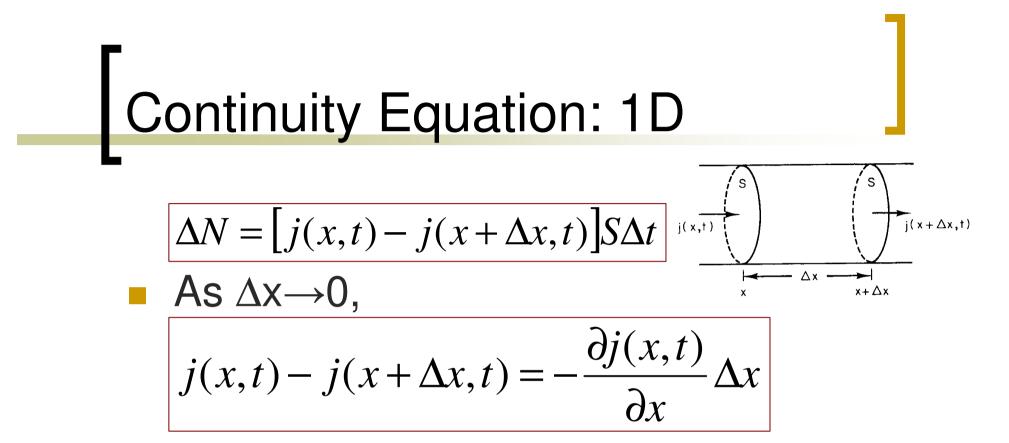
- Consider the case of a number of particles
 Fluence rate: j particles/unit area/unit time
- Value of j may depend on position in tube and time

 $\circ \quad j=j(x,t)$

Let volume of paricles in the volume shown to be N(x,t)

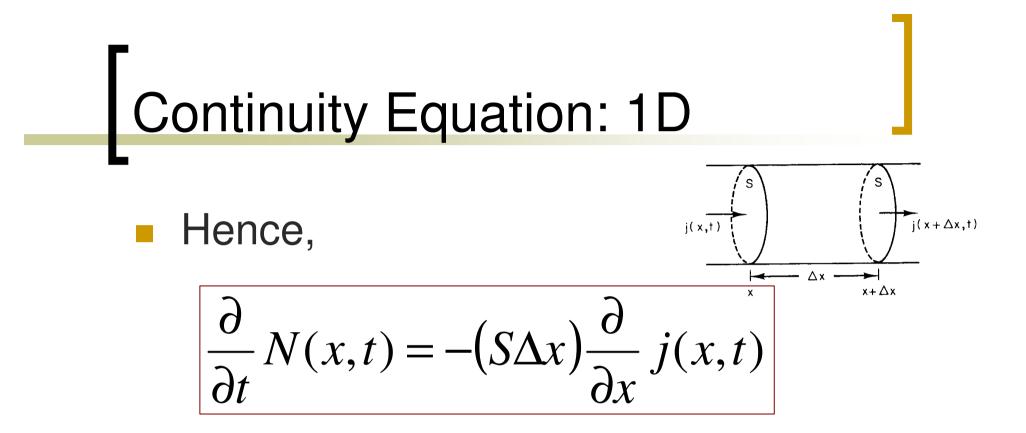
• Change after $\Delta t = \Delta N$





Similarly, increase in N(x,t) is,

$$\Delta N(x,t) = N(x,t + \Delta t) - N(x,t) = \frac{\partial N}{\partial t} \Delta t$$

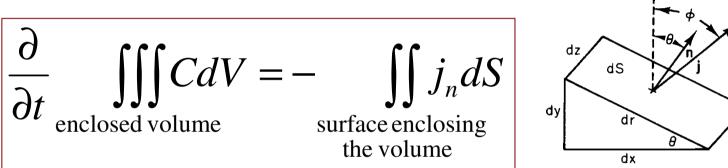


Then, the continuity equation in 1D is,

$$\frac{\partial C}{\partial t} = -\frac{\partial j}{\partial x}$$

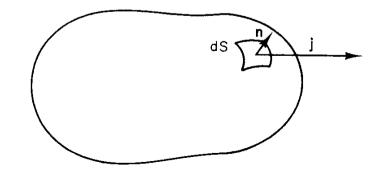
Continuity Equation: Alternative Forms

3D: Integral form



3D: Differential form

$$\frac{\partial C}{\partial t} = -\text{div } j_m$$



Drift or Solvent Drag

- One simple way the solute particles can move is to drift with constant velocity
 - Uniform electric or gravitational field
 - Carried along by solvent
- Solute fluence rate **j**_s is given by,

$$\mathbf{j}_{\mathbf{s}} = C \cdot \mathbf{j}_{\mathbf{v}}$$

Brownian Motion

- Application of thermal equilibrium at temperature T
- Kinetic energy in $1D = k_B T/2$
- Kinetic energy in $3D = 3k_BT/2$
- Random motion \rightarrow mean velocity $\overline{v} = 0$
 - \circ can only deal with mean-square velocity v^2

$$\frac{1}{2}m\overline{v^2} = \frac{3k_BT}{2} \Longrightarrow v_{rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3k_BT}{m}}$$

Brownian Motion

TABLE 4.2. Values of the rms velocity for various particles at body temperature.

	Molecular	Mass	$v_{\rm rms}$
Particle	weight	(kg)	$(m \ s^{-1})$
H ₂	2	$3.4 imes 10^{-27}$	1940
H_2O	18	$3 imes 10^{-26}$	652
O_2	32	5.4×10^{-26}	487
Glucose	180	3×10^{-25}	200
Hemoglobin	65 000	1×10^{-22}	11
Bacteriophage	$6.2 imes 10^6$	1×10^{-20}	1.1
Tobacco mosaic			
virus	40×10^6	6.7×10^{-20}	0.4
E.~coli		2×10^{-15}	0.0025

- Brownian motion of particles: collisions
- Mean Free Path
 - Average distance between successive collisions
- Collision Time
 - Average time between successive collisions

- Consider N(x) to be number of particles without collision after a distance x
- For short distances *dx*, probability of collision is proprtional to *dx*

$$dN = N(x)\left(\frac{1}{\lambda}\right)dx \rightarrow N(x) = N_0 e^{-x/\lambda}$$

Average distance = mean free path

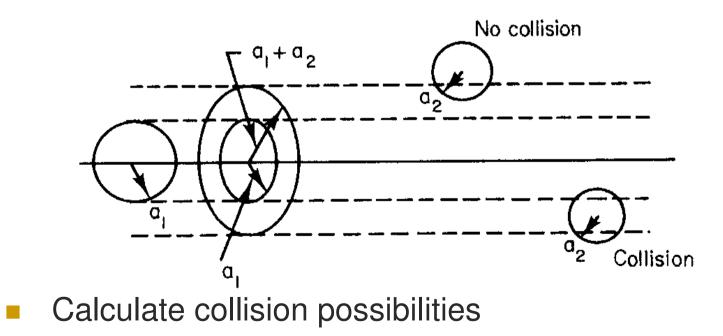
$$\overline{x} = \frac{1}{N_o} \int_0^\infty x \frac{N(x)}{\lambda} dx = -\lambda \left[e^{-x/\lambda} \left(\frac{x}{\lambda} + 1 \right) \right]_0^\infty = \lambda$$

Similar argument can be made for time

$$N(x) = N_0 e^{-x/t_c}$$

• Collision time = t_c

- Need to evaluate λ and t_c
- Consider one particle moving with a radius a₁
- Consider stationary particles with radius a₂



After moving a distance x, volume covered is given by,

$$V(x) = \pi (a_1 + a_2)^2 x$$

- On average, when a particle travels mean free path, there is one collision
 - Average number of particles in V(λ)=1

• Concentration = $1/V(\lambda)$

$$C = 1/V(\lambda) = 1/\pi (a_1 + a_2)^2 \lambda \Longrightarrow \lambda = \frac{1}{\pi (a_1 + a_2)^2 C}$$

- Collision *Cross Section* is π(a₁+a₂)²
 Important for radiation interaction
- Example: gas at STP, volume of 1 mol = $22.4 \text{ L} (\text{C}= 2.7 \times 10^{25} \text{m}^{-3}), a_1 = a_2 = 0.15 \text{ nm}$

 \circ λ =0.13 μ m

- 1000 times the molecular diameter
- Assumption of infrequent collisions justified

• Given mean free path λ ,

$$t_c = \frac{\lambda}{\overline{v}}$$

Taking the average speed as v_{rms},

$$t_c \approx \lambda \left(\frac{m}{3k_BT}\right)^{1/2}$$

- \circ Dependence on $m^{1/_2}$ and λ
- For air and room temperature, $t_c = 2 \times 10^{-10}$ s

Motion in a Liquid

- Direct substitution in Gas equations?
- For water,
 - $\circ \lambda = a = 0.1 \text{ nm} \rightarrow assumption broken$
 - $t_c \sim 10^{-13}$ s → much more frequent
 - Wrong calculations

Problem Assignments

Information posted on web siteProblems 1,4,5,6