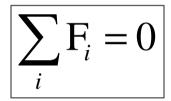
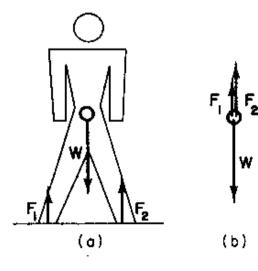
Medical Equipment I

Term I 2008-2009

Web: http://ymk.k-space.org/courses.htm

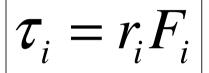
Distances and Sizes


- Valuable skill in physics: ability to make order-of-magnitude estimates
- Example: calculate number of cells in body
 - o Cells ~ 10 μm in size → volume ~ $(10 \mu m)^3$
 - Adult ~ 2 m tall and 0.3 m wide
 - \rightarrow volume $\sim 2 \times 0.3 \times 0.3 = 0.18 \text{ m}^3$
 - Assume body is made entirely of cells
 - Number of cells = $0.18/1e-15 \sim 2 \times 10^{14}$


Forces and Translational Equilibrium

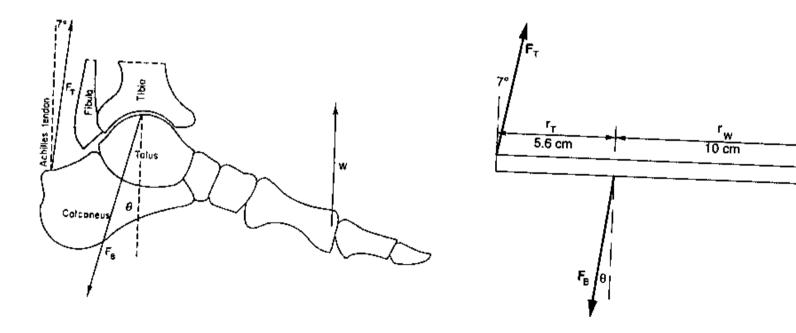
Force defined by Newton's second law

$$F = ma$$

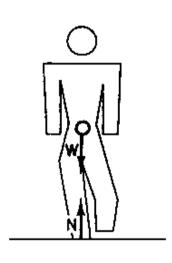

- Translational equilibrium:
- Equilibrium:
 - remains at rest
 - move at constant speed

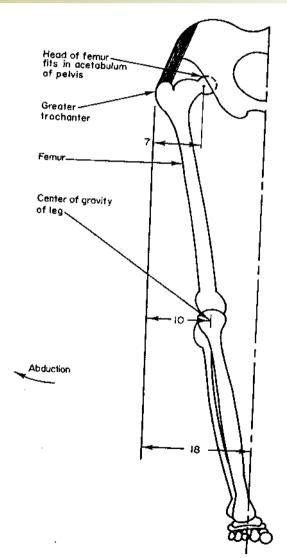
Rotational Equilibrium

- Torques $\tau_{\rm i}$ is defined as $| au_i = r_i F_i|$

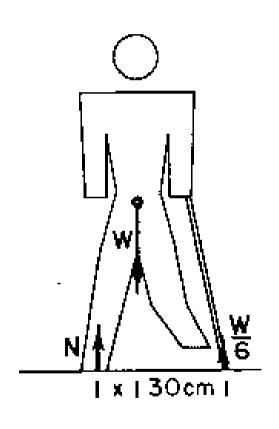


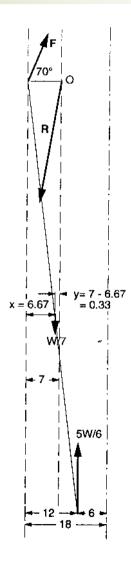
Rotational equilibrium if,


$$\sum_{i} \tau_{i} = 0$$

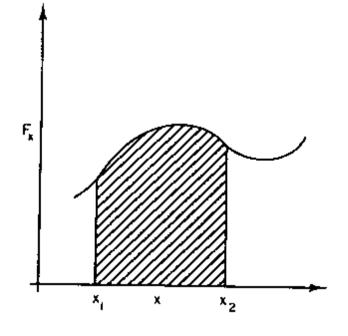

Example: Achilles Tendon

 Apply both translational and rotational equilibrium conditions


Example: Forces on the Hip



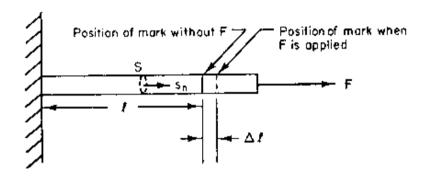
Example: Use of a Cane

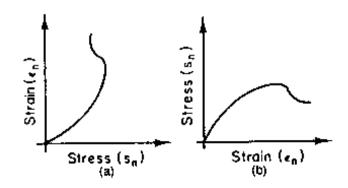


Work

Work done by a force F_x as it moves from x₁ to x₂

$$W = \int_{x1}^{x2} F_x(x) dx$$


- Area under curve
- Equal to increase in K.E.


Stress and Strain

Normal stress: tensile/compressive

$$s_n = \frac{F}{S} = E\varepsilon_n = E\frac{\Delta l}{l}$$

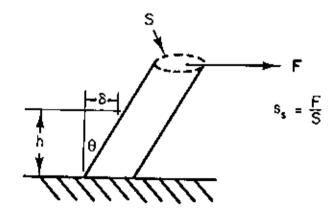
E: Young's modulus

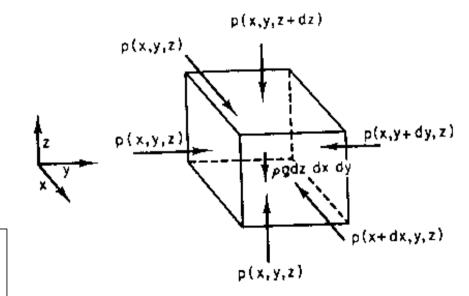
Shear

Force parallel to surface

$$s_s = \frac{F}{S} = G\varepsilon_s = G\frac{\delta}{h}$$

• G: shear modulus




FIGURE 1.23. Shear stress and strain.

Hydrostatics

Equilibrium:

$$\frac{dp}{dz} = -\rho g$$

$$p = p_o - \rho gz$$

Buoyancy

Object immersed in fluid

$$F = (\rho_{fluid} - \rho) \cdot g \cdot V$$

- Example: Terrestrial animals
 - \circ Very small *buoyancy* because $|
 ho_{\it fluid}| <<
 ho$

$$ho_{ extit{fluid}} <<
ho$$

- Example: Aquatic animals
 - Very small F because $\rho_{fluid} \approx \rho$
 - "Weightless" in water

Compressibility

Pressure on a fluid

$$\frac{\Delta V}{V} = -\kappa \cdot \Delta p$$

- Compressibility κ negligible in many cases (e.g., $\kappa = 5 \times 10^{-10} \text{ Pa}^{-1}$ for water)
- Important for such phenomena as ultrasound transmission

Viscosity

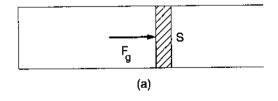
Laminar flow of a Newtonian fluid

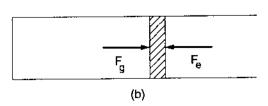
$$F = \eta S \frac{dv_x}{dy}$$

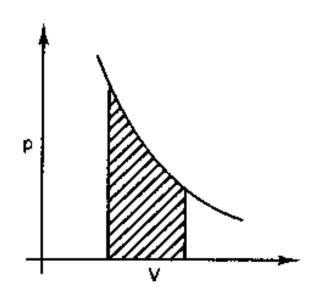
$$v_x = 0$$

$$R_p = 2\pi r \Delta x \eta |dv/dr|$$

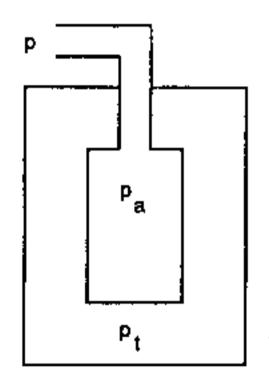
$$End View \qquad Side View \qquad Velocity Profile$$

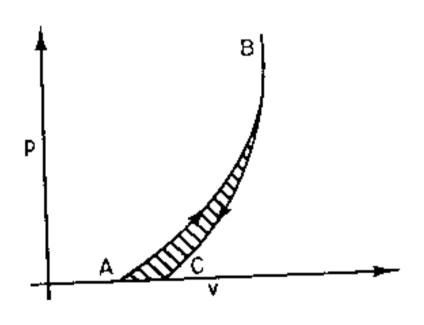

Application: clean room isolation

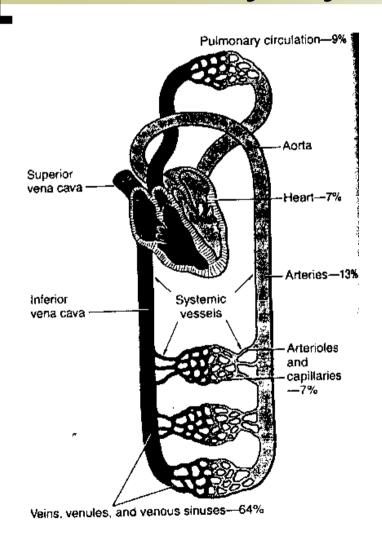

Pressure-Volume Work

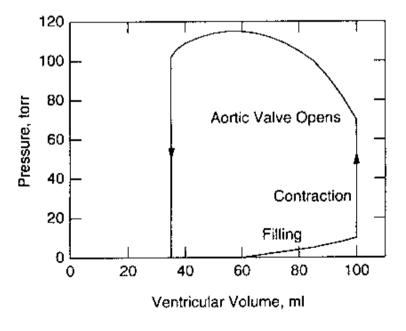

Work done by a gas

$$W_{by gas} = F \cdot dx = p \cdot S \cdot dx = p \cdot dV$$


$$W_{by gas} = \int_{V1}^{V2} p \cdot dV$$






Example: Respiration Work

Circulatory System

Turbulent Flow and Reynolds Number

Turbulent flow when Reynolds number is more than a few thousands

$$N_R = \frac{LV\rho}{\eta}$$

Example: Circulatory System

TABLE 1.4. Typical values for the average pressure at the entrance to each generation of the major branches of the cardio-vascular tree, the average blood volume in certain branches, and typical dimensions of the vessels.

Location	Average pressure (torr)	Blood volume ^a (ml)	$\begin{array}{c} {\rm Diameter}^b \\ {\rm (mm)} \end{array}$	Length ^b (mm)	$egin{array}{c} ext{Wall} \ ext{thickness}^b \ ext{(mm)} \end{array}$	Avg. velocity ^{b} (m s ⁻¹)	Reynolds number at maximum flow ^c
	-		Systemi	e circulation	1		
Left atrium	5						
Left ventricle	100						
Aorta	100	156	20	500	2.00	4.80×10^{-1}	9 400
Arteries	95	608	4	500	1.00	4.50×10^{-1}	1 300
Arterioles	86	94	0.05	10	0.2	5.00×10^{-2}	
Capillaries	30	260	0.008	1	0.001	1.00×10^{-3}	
Venules	10	470	0.02	2	0.002	2.00×10^{-3}	
Veins	4	2682	5	25	0.5	1.00×10^{-2}	
Vena cava	3	125	30	500	1.5	3.80×10^{-1}	3 000
Right atrium	3						
•			Pulmonar	y Circulatio	01)		•
Right atrium	3			•			
Right ventricle	25						
Pulmonary artery	25	52					*
Arteries	20	91					7 800
Arterioles	15	6					
Capillaries	10	104					
Veins	5	215					2 200
Left atrium	5						

Problem Assignment

- Posted on class web site
- Solution manual is available from the textbook's web site