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Exponential Growth

An exponential growth process is one
In which the rate of increase of a
qguantity is proportional to that quantity

Exam p | e - TABLE 2.1. Growth of a savings account earning 5% interest

compounded annually, when the initial investment is $100.

Year Amount Year Amount Year Amount

1 $105.00 10 $162.88 100 $13,150.13
2 110.25 20 265.33 200 1,729,258.09
3 115.76 30 432.19 300 2.27 x 10°
4
D

Savings account

121.55 40 704.00 400  2.99 x 10"
127.63 50 1146.74 500  3.93 x 102
134.01 60 1867.92 600  5.17 x 10'
140.71 70 3042.64  F00  6.80 x 10%°
147.75 80  4956.14 800  8.94 x 10'®
155.13 90  8073.04 900  1.18 x 10%

Y = )70(1+b)t
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Exponential Growth
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FIGURE 2.1. The amountl in a savings account after ¢ ycar: t

when the amount is compounded annually at 5% intercst. FIGURE 2.2. A graph of th tial functi :
/N ¢ exponential runction y — [



Exponential Growth:

Compounding

N times/year

TABLE 2.2. Amount of an initial investment of $100 at 5%
annual interest, with different methods of compounding.

Month Annual Semiannual Quarterly Monthly Instant

0 $100.00 $100.00  $100.00 $100.000 $100.000
1 100.00 100.00 100.00  100.417 100.418
2 100.00 100.00 100.00  100.835 100.8337
3 100.00 100.00 101.25 101.255 101.258
4 100.00 100.00 101.25 101.677 101.681
5 100.00 100.00 101.25 102.101  102.105
6 100.00 102.50 102.52 102.526  102.532
7 100.00 102.50 102.52  102.953  102.960
8 100.00 102.50 102.52  103.382  103.390
9 100.00 102.50 103.80 103.813 103.821
10 100.00 102.50 103.80 104.246  104.255
11 100.00 102.50 103.80 104.680 104.690
12 105.00 105.06 105.09 105.116  105.127




[Exponential Growth
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[Exponential Growth

Differential Equation
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Exponential Decay

Example: assume b>0
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FIGURE 2.3. A plot of the fraction of nuclei of ™ T¢ surviv-
ing at lime ¢.



[ExponenﬁaIDecay

Half-Life T,,: Lebgth of time required
for y, to decrease to Y2 its original value

Yr = 0.5y, < e =0.5

1/

0.693

b
Note: Doubling time T, is same value

Tl/2 ~




[ExponenﬁaIDecay

Example: Radioactive decay of ®™Tc¢
Decay rate: b= 0.1155 h1
T, =0.693/0.1155 =6 h
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FIGURE 2.3. A plot of the fraction of nuclei of 9" T¢ surviv

ing al time ¢.



[Semilog Paper

lOg y, = log yoebt — IOg Y, + bt
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FIGURE 2.2. A graph of the exponential function y = e t

FIGURE 2.4. A plot of the exponcential function on semilog
paper.




[Semilog Paper: Example
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FIGURE 2.5. A semilogarithmic plot of the intensity of light
after it has passed through an absorber of thickness .



Variable Rates
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FIGURE 2.6. A semilogarithmic plot of y vs © when the decay FIGURE 2.7. Semilogarithmic plots of the fraction of a popj
rate is not constant. Each tangent line represents the instan- alation surviving in three different diseases. The death rates
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Variable Rates: Example
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FIGURE 2.8. Survival of patients with congestive heart fail-
are. Data are from McKee et al. (1071).



Variable Rates: Example
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FIGURE 2.9. The [raction of patients surviving after
ocardial infarction (heart attack) at t == 0. The curve lab¢
“Fast Compouent” plots 10 times the difference between
survival curve and the extrapolated “Slow Component.” F
B. Zumoff, 11. Hart, and L. Hellman (1966). Considerat
of mortality in certain chronic diseascs. Ann. Intern.
64: 595-601. Reproduced by permission of Annals of Inte
Medicine. Drawing courtesy of Prof. Zumoff.



Clearance

Clearance K is defined by,

dy

dt

y K
—KC=-K| = |=- —|y

T

I
Rate of loss depends
¥,V oh concentration here
y=CV —

I
Kidney  Urine

Compartment (Fluid volume)

FIGURE 2.10. A case in which the rate of removal of a sub-
stance from the a fluid compartment depends on the concen-
tration, not on the total amount of substance in the com.-
partment. [ncreasing the compartment volume with the same

concentration of the substance would not change the rate of
removal,



[I\/Iultiple Decay Paths

Multiple decay processes
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Decay Plus Input at a
Constant Rate
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FIGURE 2.12. (a) Plot of y(t). (b) Plot of dy/dt.



Decay with Multiple Half-Lives:
Fitting Exponentials
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FIGURE 2.13. Fitting a curve with two exponentials.



Log-Log Plots
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FIGURE 2.15. Log-log plots of y = x™ for different values of

n. When z = 1, y = 1 in every ¢asc.



Log-Log Plots
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FIGURE 2.16. Log-log plots of y = Bz, showing how the
curves shift on the paper as B changes. Since n = 1 for all
the curves, they all have the same slope. There is also a plot
of y =+ 1, to show that a polynomial does not plot as a
straight line.



Example: Food Consumption
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FIGURE 2.17. Plot of daily food requirement F and height H
vs mass M for growing children. Data are from Kempe et al
(1970), p. 90.



Example: Basal Metabolic Rate

10* F

10—3 -

107°¢ |-

Metabolic rate (Watts)

107° |

102 |-

i [l 1 L

)i
10715 10717 107% 10°¢ 1073 I 103
Body mass (kg)

FIGURE 2.18. Plot of resting metabolic rate vs. body mass for
many different organisms. Graph is from R. H. Peters (1983).
The Ecological Implications of Body Size. Cambridge, Carm-
bridge University Press. Modified from A. M. Hemmingsen
(1960). Energy metabolism as related to body size and respi-
ratory surfaces, and its evolution. Reports of the Steno Memo-
rial Hospital and Nordisk Insulin Laboratorium. 9 (Part II):
6-110. Used with permission.



[Problem Assignment

Posted on class web site

Solution manual is available from the
textbook’'s web site



