

HUMAN FACTORS ENGINEERING: DESIGN OF MEDICAL DEVICES

General Principles

- Knowledge of detailed human factors guidelines is helpful when designing a medical device
 - Command of the general principles (rules of thumb) is critical
- Clinicians and users can usually cope with devices that have specific design shortcomings, provided that the flaws do not lead to serious use errors or pose insurmountable obstacles to accomplishing a task
- few device—user interface designs are perfect
 - usually violate one specific guideline or another
 - Much more serious if device violates a general design principle

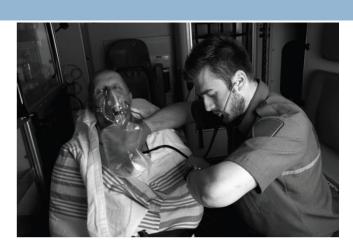
General Principles

- Serious violations render a medical device unsafe and unusable
 - Presenting information too quickly
 - Expecting users to carefully read a manual before
- Designers should focus on meeting the high-level design principles before they perfect the details
 - no sense in refining a fundamentally flawed product

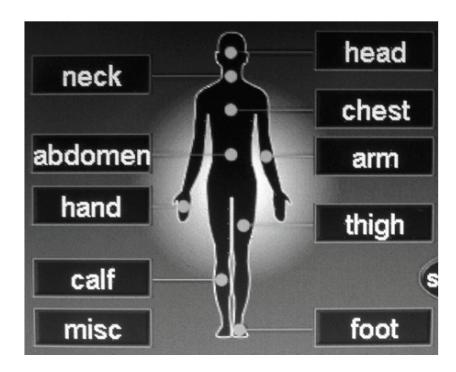
- Seek user input
 - Involve users early and often
 - Refine designs through usability testing
- Establish design priorities
 - Keep it simple
 - Ensure safe use
 - Ensure essential communication
 - Anticipate device failures
 - Facilitate workflow

- Accommodate user characteristics and capabilities
 - Do not expect users to become masters
 - Expect use errors
 - Accommodate diverse users
 - Maximize accessibility
 - Consider external factors that influence task performance

Sample user	Level of mastery of performing specific tasks		
	Determine the total volume of IV fluid infused	Set up a "piggyback" infusion	Change the battery
Nurse X	High	Medium	Low
Physician Y	Medium	Low	Low
Biomedical Engineer Z	Medium	Low	High



- Accommodate users' needs and preferences
 - Prioritize user input
 - Do not rely exclusively on "thought leaders"
 - Let users set the pace
- Establish realistic expectations of users
 - Do not rely on training
 - Do not rely on instructions for use
 - Do not rely on warnings
 - Do not rely on users' memory
 - Avoid information overload
 - Do not assign users tasks that are better suited to the device


- Consider real-world demands
 - Consider the context of use
 - Consider worst-case scenarios
 - Make devices as rugged as necessary
 - Limit user workload
 - Consider potential for device migration into other uses or use environments

- Develop compatible designs
 - Accommodate mental models
 - Establish natural or conventional mappings
 - Follow industry conventions and consensus standards

- Optimize user interactions to enhance safety and effectiveness
 - Make devices error-tolerant and fail in a safe manner
 - Avoid physical strain, repetitive motions, and cumulative traumas
 - Help users anticipate future events
 - Confirm important actions
 - Make critical controls robust and guard them
 - Clarify operational modes
 - Employ redundant coding
 - Design to prevent user confusion
 - Don't neglect device appeal

Covered Material

□ Chapter 4