
Microcontroller Based 
Design



Today’s Lecture Plan

• Description of second project

• Term exam comment

• Microcontroller development

• Real-time operating systems

• Application to embedded biomedical 
systems



Embedded C/C++

• Standard C/C++ language constructs are 
used to develop applications

• Use a special header file for each device 
to define its SFRs in plain English

– P2 instead of 0x1F

• Use a C compiler to generate HEX code 
ready to download to device



Function vs. Macro

• Functions are subrourines

– Stored in code once but executed many times

– Require suitable stack length

– Slower

• Macros

– Actual hard-coded segments

– Stored whenever called in program



Embedded System Definition

• Embedded systems are computing systems with 

tightly coupled hardware and software 

integration, that are designed to perform a 

dedicated function. 

• The word embedded reflects the fact that these 

systems are usually an integral part of a larger 

system, known as the embedding system. 

• Multiple embedded systems can coexist in an 

embedding system.



Real-Time Embedded Systems

• In the simplest form, real-time systems can be 

defined as those systems that respond to 

external events in a timely fashion. 

• The response time is guaranteed

• Timing correctness is just as important as 

functional or logical correctness.



Hard/Soft Real-Time Systems

• A hard real-time system is a real-time system 
that must meet its deadlines with a near-zero 
degree of flexibility. 
– The deadlines must be met, or catastrophes occur.

• A soft real-time system is a real-time system 
that must meet its deadlines but with a degree of 
flexibility. 
– The deadlines can contain varying levels of tolerance, 

average timing deadlines, and even statistical 
distribution of response times with different degrees 
of acceptability. 

– A missed deadline does not result in system failure, 
but costs rise in proportion to the delay



Real-Time Operating System

• Allows you to create applications that 
simultaneously perform multiple functions or 
tasks. 

• While it is certainly possible to create real-time 
programs without an RTOS (by executing one or 
more functions or tasks in a loop) there are 
numerous scheduling, maintenance, and timing 
issues that an RTOS can solve for you. 

• RTOS allows flexible scheduling of system 
resources like the CPU and memory and offers 
some way to communicate between tasks. 



Basic RTOS Functionality

• The basic functionality allows to start and 
stop concurrent tasks (processes).

• Additional functions support an inter-
process communication. 

• This communication may be used to 
synchronize different tasks, to manage 
common resources like peripherals or 
memory regions and to pass complete 
messages between tasks. 



Basic Functions

• The basic functions are used to start up 
the Real-Time Executive, to start and stop 
tasks and to pass control from one task to 
another (round-robin scheduling). It is 
possible to assign execution priorities to 
tasks. These are used to select one 
particular task to be run next, if more than 
one task is ready to run (preemptive 
scheduling). 



Inter-process Communication

• RTOS provides several ways for 
interprocess communication including:

– Event flags

– Semaphores

– Mutexes

– Mailboxes. 



Event Flags

• The primary means to implement a task synchronization

• Each task has 16 event flags assigned to it and may 
therefore wait selectively for 16 different events. 

• It is possible for a task to wait for more than one flag at 
the same time. In this case it can be chosen if all 
selected flags have to be set before the task continues 
(AND-connection), or the task continues if just one or a 
few of all selected flags are set (OR-connection).

• Event flags may be set by interrupt functions as well.
– possible to synchronize asynchronous external events to RTOS 

tasks. 



Resource Scheduling

• If a common resource has to be accessed 
by more than one task, special means are 
required in a real-time multitasking 
system. 

• Otherwise different accesses may interfere 
and lead to inconsistent data or a miss-
behavioral of a peripheral element. 



Semaphores

• The primary means for resource reservation

• These are software objects containing a virtual 
token (binary semaphore).

• The token is passed to one task at a time thus 
excluding interfering accesses to a common 
resource.

• The semaphore may put a task to sleep, if the 
token is not available. 
– It will be waken up as fast as the token is returned to 

the semaphore. 
– To handle erroneous situations it is possible to 

combine the wait for a token with a time-out. 



Binary vs. Counting Semaphores



Mutexes

• An alternative approach to synchronization 
problems is the use of mutual exclusion 
locks - mutexes. 

• These are software objects that can be 
used to lock the common resources and 
allow access only from a task that owns 
the mutex. 

• The other tasks are blocked until a mutex
is released. 



Mutex Operation



Mailboxes

• It is sometimes required to exchange messages
between tasks. 

• The message is simply a pointer to the block of memory 
containing a protocol message or frame. 

• The memory block is dynamically allocated and provided 
by the user. It is the user responsibility to properly 
allocate / deallocate the memory blocks to prevent 
memory leaks.

• The message may put the task to sleep, if the message 
for the message waiting task is not available. It will be 
waken up as soon as the message is sent to the mailbox 
to the waiting task. 



Round-Robin Multitasking

• Round-Robin allows quasi-parallel execution of several 
tasks. 

• Tasks are not really executed concurrently but are time-
sliced (the available CPU time is divided into time slices 
and RTOS assigns a time slice to each task). 

• Since the time slice is short (only a few milliseconds) it 
appears as though tasks execute simultaneously. 

• Tasks execute for the duration of their time-slice (unless 
the task's time slice is given up). Then, RTX Kernel 
switches to the next task that is ready to run and has the 
same priority. 
– If no other task with the same priority is ready to run, the 

currently running task resumes it's execution. 



Cooperative Multitasking

• You must call the system wait or pass 
functions somewhere in each task. 

• These functions signal RTOS to switch to 
another task. 



Preemptive Multitasking

• If a task with a higher priority than currently running task becomes 
ready to run, it will suspend the current running task.

• Examples include:
– An event is set for a higher priority task by a currently running task or by 

an interrupt service routine. The higher priority task continues to run. 

– a token is returned to a semaphore and a higher priority task is waiting 
for one. The semaphore waiting task will continue to run. 

– A mutex is released and a higher priority task is waiting for it. The 
currently running task will be suspended and a task waiting for mutex
will continue to run. 

– A message is posted to a mailbox and a higher priority task is waiting 
for one. The currently running task will be suspended and a message 
waiting task will continue to run. 

– The priority of currently running task has reduced. If other task is ready 
to run and has a higher priority than currently running task, this task is 
suspended immediately and higher priority task resumes it's execution. 



Applications

• Design of a biomedical embedded system

– Block diagram

– Development of hardware drivers

– Generating high-level description of tasks and 

their timing

– Use RTOS whenever available to simplify 

design tasks scheduling

– Choose the right development tools 


