I/O Ports

- Pin direction
 - Unidirectional (input or output only)
 - Bidirectional (input AND output)
- Data direction register
- Output mode register
- Data register
- Multiple function pins

2. ABSOLUTE MAXIMUM RATINGS

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Ambient temperature under bias		-55		125	°C
Storage Temperature		-65		150	°C
Voltage on any Pin (except VDD and Port I/O) with respect to DGND		-0.3		VDD + 0.3	v
Voltage on any Port I/O Pin or /RST with respect to DGND		-0.3		5.8	v
Voltage on VDD with respect to DGND		-0.3		4.2	V
Maximum Total current through VDD, AV+, DGND, and AGND				800	mA
Maximum output current sunk by any Port pin				100	mA
Maximum output current sunk by any other I/O pin				50	mA
Maximum output current sourced by any Port pin				100	mA
Maximum output current sourced by any other I/O pin				50	mA

Table 2.1. Absolute Maximum Ratings*

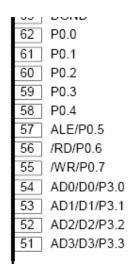

* Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Figure 17.10. P0: Port0 Data Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu					
P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	11111111					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0	SFR Addres					
						(bit addressabl	e) 0x80					
Bits7-0:	P0.[7:0]: Port0) Output La	tch Bits.										
		•		r XBR0, XB	R1, XBR2, a	and XBR3 R	legisters)						
	· ·	(Write - Output appears on I/O pins per XBR0, XBR1, XBR2, and XBR3 Registers) 0: Logic Low Output.											
	1: Logic High	1: Logic High Output (open if corresponding P0MDOUT.n bit = 0).											
	(Read - Regard	dless of XB	R0, XBR1, 2	XBR2, and X	BR3 Registe	er settings).							
	0: P0.n pin is 1	0: P0.n pin is logic low.											
	1: P0.n pin is logic high.												
	-	Note: P0.7 (/WR), P0.6 (/RD), and P0.5 (ALE) can be driven by the External Data Memory Interfac											
	- Nata: D 0.7 (/W	D) DO 6 //	D)	5 (ALE)	h	de a Eastanna	Dete Mare	T					
	5	2	<i>2</i> -	3 P	-			-					
	See Section "]	l6. EXTER	NAL DATA	MEMORY	INTERFA	CE AND O	N-CHIP X	RAM" on					
	5	16. EXTER	NAL DATA ation. See al	MEMORY	INTERFA	CE AND O	N-CHIP X	RAM" on					

Figure 17.11. P0MDOUT: Port0 Output Mode Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0	SFR Address:
								0xA4
Bits7-0:	P0MDOUT.[7:	-	-					
	0: Port Pin out		0	-				
	1: Port Pin out	put mode is	s configured	as Push-Pull				
Note:	SDA, SCL, and configured as (hen UART1	is in Mode	0) are always

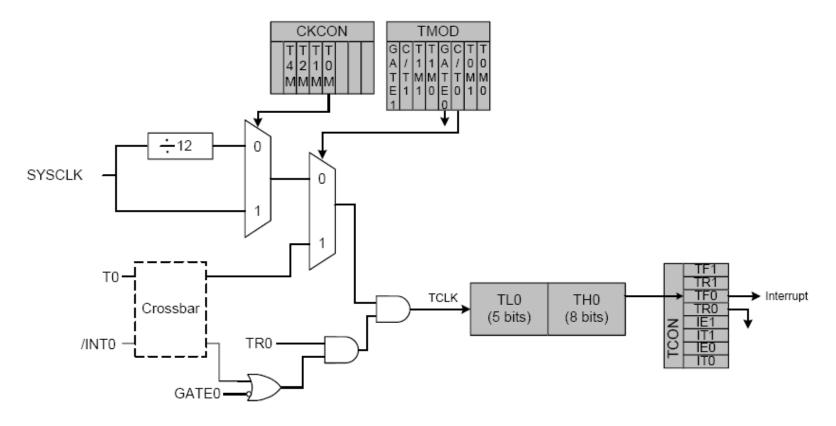
Timer Operation

- Timer mode
- Timer clock source
- Timer output
- Links to other devices

Timer modes

- Timer
- Counter
- Baud rate generator
- ADC clock generator
- Bus clock generator

Timer 0 and Timer 1:	Timer 2:	Timer 3:	Timer 4
13-bit counter/timer	16-bit counter/timer with	16-bit timer with auto-	16-bit counter/timer with
15-on counter/inner	auto-reload	reload	auto-reload
16-bit counter/timer	16-bit counter/timer with		16-bit counter/timer with
10-bit counter/timer	capture		capture
8-bit counter/timer with	Baud rate generator for		Baud rate generator for
auto-reload	UART0		UART1
Two 8-bit counter/timers			
(Timer 0 only)			


Timer Clock Source

- System clock divided by a factor
 - 1
 - 12
- External clock on a pin
 - Counter operation
 - Max f_{clk}/4

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value T4M T2M T1M T0M Reserved Reserved Reserved 00000000 Bit7 Bit6 Bit5 Bit3 Bit1 SFR Address: Bit4 Bit2 Bit0 0x8E UNUSED. Read = 0b, Write = don't care. Bit7: T4M: Timer 4 Clock Select. Bit6: This bit controls the division of the system clock supplied to Timer 4. This bit is ignored when the timer is in baud rate generator mode or counter mode (i.e. C/T4 = 1). 0: Timer 4 uses the system clock divided by 12. 1: Timer 4 uses the system clock. T2M: Timer 2 Clock Select. Bit5: This bit controls the division of the system clock supplied to Timer 2. This bit is ignored when the timer is in baud rate generator mode or counter mode (i.e. C/T2 = 1). 0: Timer 2 uses the system clock divided by 12. 1: Timer 2 uses the system clock. Bit4: T1M: Timer 1 Clock Select. This bit controls the division of the system clock supplied to Timer 1. 0: Timer 1 uses the system clock divided by 12. 1: Timer 1 uses the system clock. Bit3: T0M: Timer 0 Clock Select. This bit controls the division of the system clock supplied to Counter/Timer 0. 0: Counter/Timer uses the system clock divided by 12. 1: Counter/Timer uses the system clock. Reserved. Read = 000b, Must Write = 000. Bits2-0:

Figure 22.1. CKCON: Clock Control Register

Figure 22.2. T0 Mode 0 Block Diagram

TR0	GATE0	/INT0	Counter/Timer
0	X	X	Disabled
1	0	X	Enabled
1	1	0	Disabled
1	1	1	Enabled
X = Dc	on't Care		

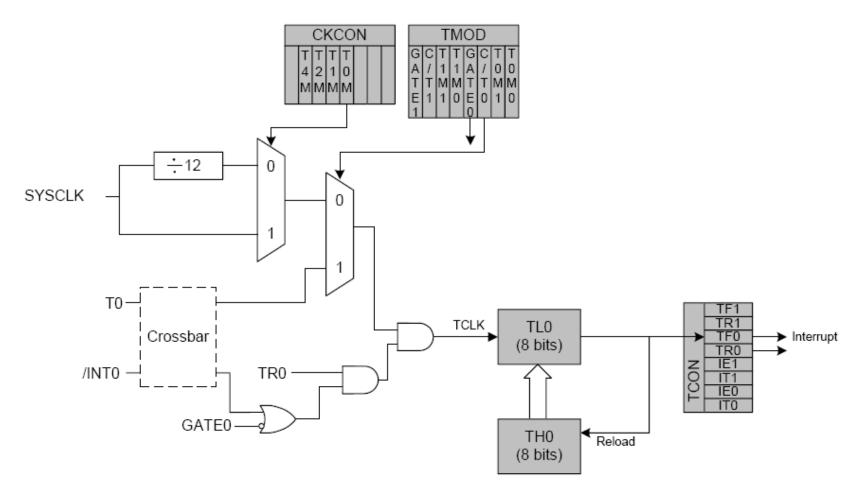


Figure 22.3. T0 Mode 2 (8-bit Auto-Reload) Block Diagram

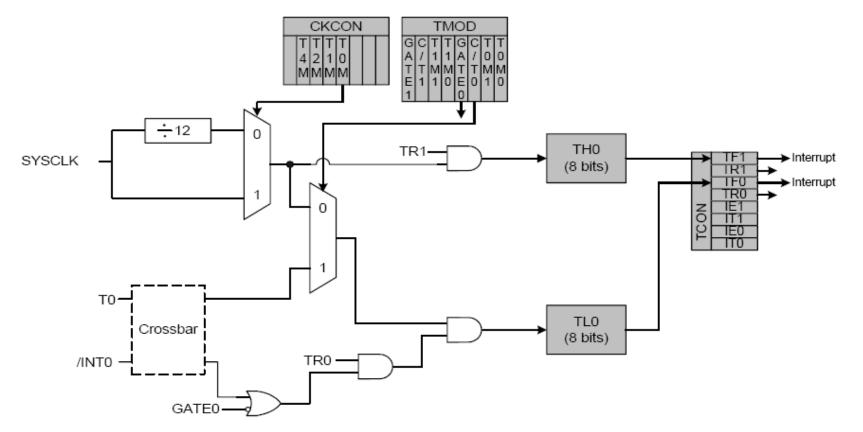
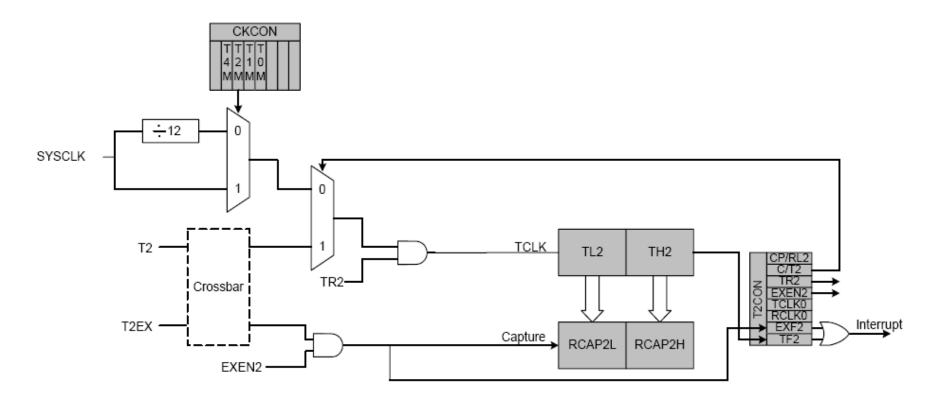



Figure 22.4. T0 Mode 3 (Two 8-bit Timers) Block Diagram

Figure 22.11. T2 Mode 0 Block Diagram

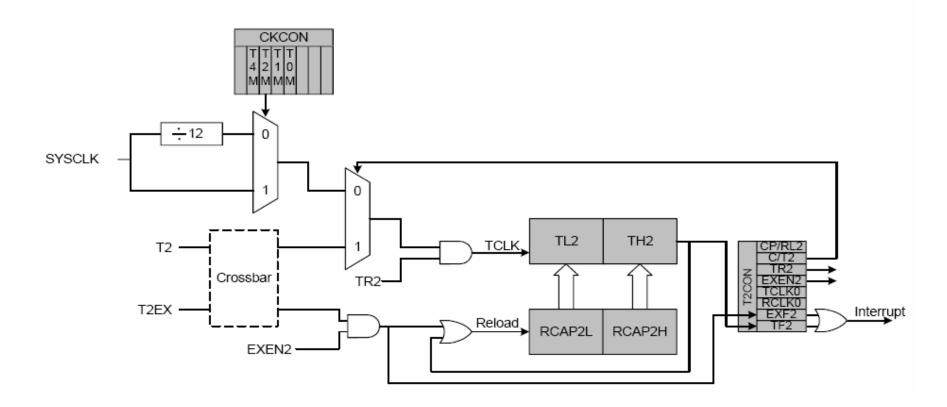
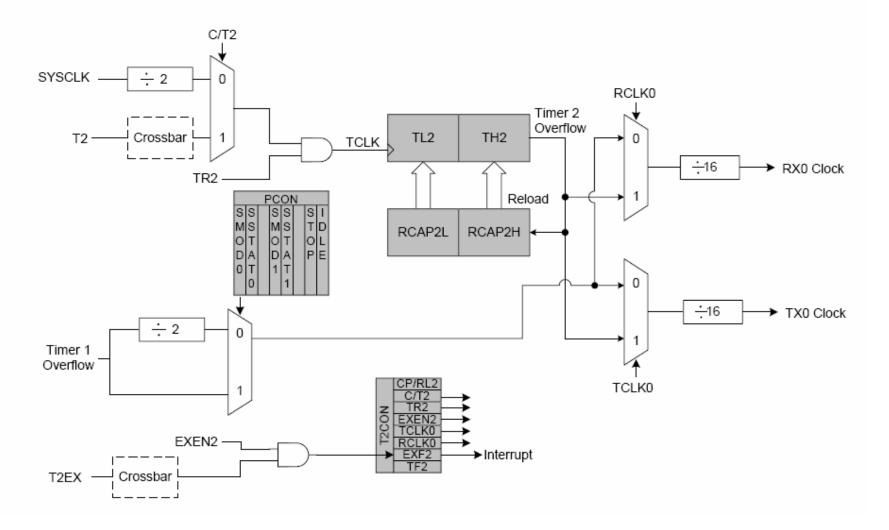



Figure 22.13. T2 Mode 2 Block Diagram

Oscillator frequency (MHz)	Divide Factor	Timer 1 Load Value*	Resulting Baud Rate (Hz)**		
25.0	434	0xE5	57600 (57870)		
25.0	868	0xCA	28800		
24.576	320	0xEC	76800		
24.576	848	0xCB	28800 (28921)		
24.0	208	0XF3	115200 (115384)		
24.0	833	0xCC	28800 (28846)		
23.592	205	0xF3	115200 (113423)		
23.592	819	0xCD	28800 (28911)		
22.1184	192	0xF4	115200		
22.1184	768	0xD0	28800		
18.432	160	0xF6	115200		
18.432	640	0xD8	28800		
16.5888	144	0xF7	115200		
16.5888	576	0xDC	28800		
14.7456	128	0xF8	115200		
14.7456	512	0xE0	28800		
12.9024	112	0xF9	115200		
12.9024	448	0xE4	28800		
11.0592	96	0xFA	115200		
11.0592	348	0xE8	28800		
9.216	80	0xFB	115200		
9.216	320	0xEC	28800		
7.3728	64	0xFC	115200		
7.3728	256	0xF0	28800		
5.5296	48	0xFD	115200		
5.5296	192	0xF4	28800		
3.6864	32	0xFE	115200		
3.6864	128	0xF8	28800		
1.8432	16	0xFF	115200		
1.8432	64	0xFC	28800		

Table 21.2. Oscillator Frequencies for Standard Baud Rates

* Assumes SMOD1=1 and T1M=1.

** Numbers in parenthesis show the actual baud rate.

Interrupts

- A total of 22 interrupt sources with two priority levels.
- When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.
- If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU begins execution of an interrupt service routine (ISR).
- If interrupts are not enabled, the interruptpending flag is ignored by the hardware and program execution continues as normal.

Interrupts

- Interrupt vs. Polling strategies
- Interrupt condition
- Interrupt vector
- Interrupt enable
- Interrupt service routine
- Program flow remains the same after interrupt

Interrupt Source	Interrupt Vector	Priority Order	' Pending Flag		Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Top	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (/INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (/INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Υ		ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow (or EXF2)	0x002B	5	TF2 (T2CON.7)	Y		ET2 (IE.5)	PT2 (IP.5)
Serial Peripheral Interface	0x0033	6	SPIF (SPI0CN.7)	Υ		ESPI0 (EIE1.0)	PSPI0 (EIP1.0)
SMBus Interface	0x003B	7	SI (SMB0CN.3)	Υ		ESMB0 (EIE1.1)	PSMB0 (EIP1.1)
ADC0 Window Comparator	0x0043	8	AD0WINT (ADC0CN.2)	Υ		EWADC0 (EIE1.2)	PWADC0 (EIP1.2)
Programmable Counter Array	0x004B	9	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y		EPCA0 (EIE1.3)	PPCA0 (EIP1.3)
Comparator 0 Falling Edge	0x0053	10	CP0FIF (CPT0CN.4)			ECP0F (EIE1.4)	PCP0F (EIP1.4)
Comparator 0 Rising Edge	0x005B	11	CPORIF (CPT0CN.5)			ECP0R (EIE1.5)	PCP0R (EIP1.5)
Comparator 1 Falling Edge	0x0063	12	CP1FIF (CPT1CN.4)			ECP1F (EIE1.6)	PCP1F (EIP1.6)
Comparator 1 Rising Edge	0x006B	13	CP1RIF (CPT1CN.5)			ECP1R (EIE1.7)	PCP1F (EIP1.7)
Timer 3 Overflow	0x0073	14	TF3 (TMR3CN.7)			ET3 (EIE2.0)	PT3 (EIP2.0)
ADC0 End of Conversion	0x007B	15	AD0INT (ADC0CN.5)	Υ		EADC0 (EIE2.1)	PADC0 (EIP2.1)
Timer 4 Overflow	0x0083	16	TF4 (T4CON.7)			ET4 (EIE2.2)	PT4 (EIP2.2)
ADC1 End of Conversion	0x008B	17	AD1INT (ADC1CN.5)			EADC1 (EIE2.3)	PADC1 (EIP2.3)
External Interrupt 6	0x0093	18	IE6 (P3IF.5)			EX6 (EIE2.4)	PX6 (EIP2.4)
External Interrupt 7	0x009B	19	IE7 (P3IF.6)			EX7 (EIE2.5)	PX7 (EIP2.5)
UART1	0x00A3	20	RI1 (SCON1.0) TI1 (SCON1.1)			ES1	PS1
External Crystal OSC Ready	0x00AB	21	XTLVLD (OSCXCN.7)			EXVLD (EIE2.7)	PXVLD (EIP2.7)

Table 12.4. Interrupt Summary

Figure 12.9. IE: Interrupt Enable

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
EA	IEGF0	ET2	ES0	ET1	EX1	ET0	EX0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0	SFR Address:				
							(bit addressabl	e) 0xA8				
Bit7:	EA: Enable Al	11 Interrupts										
20117.	This bit global	-		ternuots Wł	en set to '0'	individual in	nternuot mas	sk settings are				
	overridden.	-,		r			<u>-</u>					
	0: Disable all i	interrupt sou	urces.									
	1: Enable each	-		ts individual	mask setting	t.						
Bit6:	IEGF0: Gener					<i>,</i>						
	This is a gener			nder softwa	re control.							
Bit5:	ET2: Enabler											
	This bit sets th		•	2 interrupt.								
	0: Disable Tin	ier 2 interru	pt.	-								
	1: Enable inter	rupt reques	ts generated	by the TF2 f	lag (T2CON	.7).						
Bit4:		ES0: Enable UARTO Interrupt.										
	This bit sets the masking of the UART0 interrupt.											
	0: Disable UA	RT0 interru	pt.									
	1: Enable UAI	RT0 interrup	ot.									
Bit3:	ET1: Enable T											
	This bit sets th	e masking o	of the Timer	1 interrupt.								
	0: Disable all	Timer 1 inte	rrupt.									
	1: Enable inter	rupt reques	ts generated	by the TF1 i	lag (TCON.7	7).						
Bit2:	EX1: Enable F		-									
	This bit sets th	-		terrupt 1.								
	0: Disable exte		•									
	1: Enable inter		~	by the /INT	l pin.							
Bit1:	ET0: Enable T		-									
	This bit sets th			0 interrupt.								
	0: Disable all											
	1: Enable inter			by the TF0 f	lag (TCON.5	5).						
Bit0:	EX0: Enable E		•	-								
	This bit sets th	-		terrupt 0.								
	0: Disable exte		•									
	1: Enable inter	rupt reques	ts generated	by the /INT) pin.							

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	PT2	PS0	PT1	PX1	PT0	PX0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0	SFR Address:
							(bit addressable) 0xB8
Bits7-6:	UNUSED. Re	ad = 11b, W	/rite = don't o	are.				
Bit5:	PT2: Timer 2	Interrupt Pri	iority Control	L.				
	This bit sets th	ne priority o	f the Timer 2	interrupt.				
	0: Timer 2 inte	errupt priori	ty determine	d by default	priority order			
	1: Timer 2 inte	errupts set t	o high priorit	y level.				
Bit4:	PS0: UART0	Interrupt Pri	iority Control	L.				
	This bit sets th	ne priority o	f the UART0	interrupt.				
	0: UART0 inte	errupt priori	ty determine	d by default	priority order			
	1: UART0 inte	errupts set t	o high priorit	y level.				
Bit3:	PT1: Timer 1	Interrupt Pri	iority Control	L.				
	This bit sets th	ne priority o	f the Timer 1	interrupt.				
	0: Timer 1 inte	errupt priori	ty determine	d by default	priority order			
	1: Timer 1 inte	errupts set t	o high priorit	y level.				
Bit2:	PX1: External	Interrupt 1	Priority Con	trol.				
	This bit sets th	ne priority o	f the Externa	l Interrupt 1	interrupt.			
	0: External Int	terrupt 1 pri	ority determi	ned by defa	alt priority or	ler.		
	1: External Int	terrupt 1 set	to high prior	ity level.				
Bit1:	PT0: Timer 0	Interrupt Pri	iority Control	L.				
	This bit sets th							
	0: Timer 0 inte	errupt priori	ty determine	d by default	priority order			
	1: Timer 0 inte	errupt set to	high priority	level.				
Bit0:	PX0: External	Interrupt 0	Priority Con	trol.				
	This bit sets th	ne priority o	f the Externa	l Interrupt 0	interrupt.			
	0: External Int		-	-	alt priority or	ler.		
	1: External Int	termint 0 set	to high prior	ity level				

Figure 12.10. IP: Interrupt Priority

Keil Development Tool

- Platform for microcontroller development
- You can program in C or even C++
 - You call SFRs by their name
- Interfaces directly to JTAG cables
- Can generate HEX code for programmers

Programming Hints

- Use #define to make your code readable
- Use #IF to make different versions with same code
- Macros vs. subroutines
- Assembly vs. C
- Real-Time Operating System (RTOS)