

Lecture 9

Timer Operations and Programming

Timer Operations and Programming

- Introduction
- Summary of timers
- Timer programming sequence
- Summary of timer SFRs
- Timer 0: 8-bit auto-reload mode (mode 2)
 - Programming sequence (timer 0 in mode 2)
 - Generating Interrupts on timer 0 overflow
- Timer 3: 16-bit auto-reload mode (mode 0)
 - Timer 3 programming sequence
 - Generating interrupts on timer 3 overflow
- Timer 2: 16-bit auto-reload mode (mode 1)
 - Timer 2: programming example
- Timer 2: 16-bit counter/timer with capture (mode 0)

Introduction

- Timers are used for: interval timing, event counting or baud rate generation
- In <u>interval timing applications</u>, a timer is programmed to overflow at a regular interval and the following:
 - Set the timer overflow flag or
 - Generate an interrupt
 - The flag or interrupt is used to synchronise the program to perform an action such as checking the state of inputs and updating the DAC output or ADC input
 - > This can also be used to generate waveforms at set frequencies
- <u>Event counting</u> is used to determine the number of occurrences of an event, rather than to measure the elapsed time between events. In this case, the timer functions as a counter.
 - An "event" is any external stimulus that provides a high-to-low transition at the selected input pin
- The timers can also function as the <u>baud rate generators</u> for the C8051F020's internal serial ports (UART0 and UART1)
 - "Baud rate" is the <u>bit rate</u> of the serial port (the time period of a bit)

Summary of Timers

The C8051F020 has 5 counter/timers

Mode	Timer 0 & 1	Timer 2	Timer 3	Timer 4
0	13-bit counter/timer	16-bit counter/timer with capture	16-bit timer with auto- reload	16-bit counter/timer with capture
1	16-bit counter/timer	16-bit counter/timer with auto-reload		16-bit counter/timer with auto-reload
2	8-bit counter/timer with auto-reload (Baud rate Generator for UART0 and UART1, Timer 1 only)	Baud rate generator for UART0		Baud rate generator for UART1
3	Two 8-bit counter/timers (Timer 0 only)			

Timers 0 and 1

Modes 0 and 1

Figure 22.2. T0 Mode 0 Block Diagram

Timers 0 and 1

Mode 2

Timers 0 and 1

Mode 3

Timer Programming Sequence

For Timers 0 and 1

- Step 1: Select the desired clock by programming CKCON.3 (T0M) or CKCON.4 (T1M). The clock input may be the system clock or the system clock divided by 12.
- Step 2: Select the operating mode (T0M[1:0] or T1M[1:0] in TMOD)
- Step 3: Write the starting value for count up sequence into the associated count registers (TL0, TL1, TH0 and TH1)
- Step 4: [OPTIONAL] Enable timer interrupt (ET0 or ET1 in IE) and global interrupts (EA in IE)
- Step 5: Set the appropriate control bits, and turn on Timer (TR0 or TR1 in TCON)

Timer Programming Sequence

- For Timer 3
 - Step 1: Write the auto-reload value into the auto-reload registers (TMR3RLL and TMR3RLH)
 - Step 2: Write the starting value for count up sequence into the count registers (TMR3L and TMR3H)
 - Step 3: Select the desired clock source (T3XCLK) and frequency (T3M) and set the control bits (TR3)
 - Step 4: [OPTIONAL] Enable timer interrupt (ET3 in EIE2) and global interrupts (EA in IE)
 - Step 5: Turn on Timer 3 (TMR3CN)
- Note: "Auto-reload" means the hardware automatically reloads the count registers with the value from the reload register when the count overflows from 0xFFFF to 0x0000

Timer Programming Sequence

- For Timers 2 and 4
 - Step 1: Select the desired system clock frequency (CKCON)
 - Step 2: Write the auto-reload value into the associated capture registers if using auto-reload mode (RCAP2L, RCAP2H, RCAP4L and RCAP4H)
 - Step 3: Write the starting value for count up sequence into the associated count registers (TL2, TL4, TH2 and TH4)
 - Step 4: Select the mode (C/Tx, CP/RLx) and set the appropriate control bits (TRx)
 - Step 5: [OPTIONAL] Enable timer interrupt (ET2 in IE or ET4 in EIE2) and global interrupts (EA in IE)

- 10
- ➢ Step 6: Turn on Timer (T2CON and T4CON)

Summary of Timer SFRs

Timer SFR	Affected Timers	Purpose	Address	Bit Addressable
СКСОМ	0, 1, 2 and 4	Clock Control	8EH	No
TCON		Timer Control	88H	Yes
TMOD	0 and 1	Timer Mode	89H	No
TLO		Timer 0 Low Byte	8AH	No
TL1		Timer 1 Low Byte	8BH	No
тно		Timer 0 High Byte	8CH	No
TH1		Timer 1 High Byte	8DH	No
T2CON		Timer 2 Control	С8Н	Yes
RCAP2L	2	Timer 2 Low Byte Capture	САН	No
RCAP2H		Timer 2 High Byte Capture	СВН	No
TL2		Timer 2 Low Byte	ССН	No
TH2		Timer 2 High Byte	СDН	No

11

Summary of Timer SFRs

Timer SFR	Affected Timers	Purpose	Address	Bit Addressable
TMR3CN		Timer 3 Control	91H	No
TMR3RLL		Timer 3 Low Byte Reload	92H	No
TMR3RLH	3	Timer 3 High Byte Reload	93H	No
TMR3L		Timer 3 Low Byte	94H	No
тмгзн		Timer 3 High Byte	95H	No
T4CON		Timer 4 Control	С9Н	No
RCAP4L		Timer 4 Low Byte Capture	E4H	No
RCAP4H	4	Timer 4 High Byte Capture	E5H	No
TL4		Timer 4 Low Byte	F4H	No
TH4		Timer 4 High Byte	F5H	No

Timer 0: 8-Bit Auto-Reload Mode (Mode 2)

- This mode configures Timers 0 (and 1) to operate as 8-bit counter/timers with automatic reload of the start value
- The timer low byte (TLx) operates as an 8-bit timer while the timer high byte (THx) holds a reload value
- When the count in TLx overflows from FFH to 00H, the timer flag is set and the value in THx is automatically loaded into TLx
- Counting continues from the reload value up to the next FFH overflow, and so on
- This mode is convenient for creating regular periodic intervals, as the timer overflows at the same rate once TMOD and THx are initialized
- TLx must be initialized to the desired value before enabling the timer for the first count to be correct
- Timer 1 can be used as an 8-bit baud rate generator for UART0 and/or UART1 in mode 2

Timer 0: Programming Step 1

Bit	Symbol	Description
7	-	Unused. Read=000b; Write=Don't care.
6	T4M	<i>Timer 4 Clock Select</i> 0: Timer 4 uses the system clock divided by 12. 1: Timer 4 uses the system clock.
5	Т2М	<i>Timer 2 Clock Select</i> 0: Timer 2 uses the system clock divided by 12. 1: Timer 2 uses the system clock.
4	T1M	<i>Timer 1 Clock Select</i> 0: Timer 1 uses the system clock divided by 12. 1: Timer 1 uses the system clock.
3	том	<i>Timer 0 Clock Select</i> 0: Timer 0 uses the system clock divided by 12. 1: Timer 0 uses the system clock
2-0	Reserved	Read=000b. Must Write=000b

- Select the desired clock by programming CKCON (Clock Control) Register
- For Timer 0, program the bit T0M

Timer 0—Programming Step 1

CKCON |= 0x04; //-- TOM = 1; Timer 0 uses SysClock CKCON &= 0xF0; //-- TOM = 0; Timer 0 uses SysClock/12

- It is very important that while configuring a timer you take care not to disturb the mode of other timers
- What would happen if you did this?

CKCON = 0x04;

Timer 0—Programming Step 2

 Select the operating mode by programming the **TMOD** (Timer Mode) register

```
//-- Timer 0 in Mode 2
//-- Set TOM[1:0] to 10b
TMOD &= ~0x03;
TMOD |= 0x02;
```

Bit	Symbol	Description
7	GATE1	Timer 1 Gate Control 0: Timer 1 enabled when TR1(TCON.6)=1 irrespective of /INT logic level 1: Timer 1 enabled only when TR1=1 AND /INT=logic 1
6	C/T1	 Counter/Timer 1 Select 0: Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.4). 1: Counter Function: Timer 1 incremented by high- to-low transition on external input pin (T1).
5-4	T1M1- T1M0	Timer 1 Mode Select
3	GATE0	Timer 0 Gate Control 0: Timer 0 enabled when TR0(TCON.4)=1 irrespective of /INT logic level 1: Timer 0 enabled only when TR0=1 AND /INT=logic 1
2	С/Т0	<i>Counter/Timer 0 Select</i> 0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3). 1: Counter Function; Timer 0 incremented by high- to-low transition on external input pin (T0).
1-0	Т0М1-Т0М0	Timer 0 Mode Select

Timer 0/Timer 1 Mode Select Bits

TxM1	TxM0	Mode	Description
0	0	0	13 bit Counter/Timer
0	1	1	16 bit Counter/Timer
1	0	2	8 bit Counter/Timer with Auto-reload
1	1	3	Timer 1: Inactive Timer 0: Two 8 bit Counter/Timers

x = 0 or 1 for Timer0 or Timer1

Timer 0—Programming Step 3

 Write the starting value for count up sequence in the appropriate register, **TL0** in this case:

TLO = 0xFF; //-- start value

 Write the reload value in the appropriate register, TH0 in this case:

THO = 0x80; //-- reload value

Timer 0—Programming Step 5

 Turn on the timer by programming the **TCON** (Timer Control) Register

//start	Time	er O
// (TCON .	4 =	1)
TR0 = 1;		

Bit	Symbol	Description
7	TF1	Timer 1 Overflow Flag Set by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine (ISR). 0: No Timer 1 overflow detected 1: Timer 1 has overflowed
6	TR1	<i>Timer 1 Run Control</i> 0: Timer 1 disabled 1: Timer 1 enabled
5	TF0	<i>Timer 0 Overflow Flag</i> Same as TF1 but applies to Timer 0 instead. 0: No Timer 0 overflow detected 1: Timer 0 has overflowed
4	TR0	<i>Timer 0 Run Control</i> 0: Timer 0 disabled 1: Timer 0 enabled
3	IE1	External Interrupt 1 This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 ISR if IT1=1. This flag is the inverse of the /INT1 input signal's logic level when IT1=0
2	IT1	Interrupt 1 Type Select 0: /INT1 is level triggered 1: /INT1 is edge triggered
1	IE0	External Interrupt 0 Same as IE1 but applies to IT0 instead.
0	IT0	Interrupt 0 Type Select 0: /INT0 is level triggered 1: /INT0 is edge triggered

Generating Interrupts on Timer 0 Overflow

- When the count in TLx overflows from FFH to 00H, the timer overflow flag is set in the TCON register
- For Timer 0 it is **TF0** in **TCON** register (TCON.5)
- To detect when a timer overflows, there are two options:
 - ➢ By polling the timer overflow bit
 - By enabling the timer overflow interrupt
 - This is done by programming the IE (interrupt enable) register

Interrupt Enable (IE) SFR

 Once the interrupt generation is enabled, the ISR is automatically executed when the timer overflows

ET0 = 1; // Enable interrupt
 // request generated
 // by Timer 0 overflow
 // flag, TF0 (TCON.5)

Bit	Symbol	Description
7	EA	<i>Enable All Interrupts</i> 0: Disable all interrupt sources. 1: Enable each interrupt according to its individual mask setting.
6	IEGF0	<i>General Purpose Flag 0</i> This is a general purpose flag for use under software control.
5	ET2	Enable Timer 2 Interrupt 0: Disable Timer 2 Interrupt. 1: Enable interrupt requests generated by TF2 (T2CON.7).
4	ES0	<i>Enable UART0 Interrupt</i> 0: Disable UART0 Interrupt. 1: Enable UART0 Interrupt.
3	ET1	<i>Enable Timer 1 Interrupt</i> 0: Disable Timer 1 Interrupt. 1: Enable interrupt requests generated by TF1 (TCON.7).
2	EX1	Enable External Interrupt 1 0: Disable external interrupt 1. 1: Enable interrupt request generated by the /INT1 pin.
1	ET0	<i>Enable Timer 0 Interrupt</i> 0: Disable Timer 0 Interrupt. 1: Enable interrupt requests generated by TF0 (TCON.5).
0	EX0	Enable External Interrupt 0 0: Disable external interrupt 0. 1: Enable interrupt request generated by the /INT0 pin.

Timer3: 16-Bit Auto-Reload Mode (Mode 0)

- Timer 3 is always configured as an auto-reload timer, with the reload value held in TMR3RLL and TMR3RLH
- **TMR3CN** is the only SFR required to configure Timer 3

Timer3: 16-Bit Auto-Reload Mode (Mode 0)

- Timer 3 may be clocked by the external oscillator source (divided by 8) or the system clock (divided by 1 or 12 according to T3M)
- When T3XCLK is set to 1, timer 3 is clocked by the external oscillator input (divided by 8) regardless of the system clock selection
- When T3XCLK is 0, the timer 3 clock source is specified by bit T3M
- Timer 3 can also be used to start an ADC Data Conversion

Timer 3 Programming Sequence—Step 1a

 Select the desired clock source (external oscillator or SYSCLK) by programming T3XCLK (TMR3CN.0)

```
//-- Stop Timer 3,
//-- Clear TF3
//-- use SYSCLK/12
//-- timebase
TMR3CN = 0x00;
```

```
//-- use External
//-- Oscillator
TMR3CN |= 0x01;
```

Bit	Symbol	Description
7	TF3	<i>Timer 3 Overflow Flag</i> Set by hardware when Timer 3 overflows from FFFFH to 0000H. When the Timer 3 interrupt is enabled, setting this bit causes the CPU vectors to the Timer 3 ISR. This bit is not automatically cleared by hardware and must be cleared by software.
6-3	UNUSED	Read=0000b, Write=don't care
2	TR3	<i>Timer 3 Run Control</i> 0: Timer 3 disabled 1: Timer 3 enabled
1	ТЗМ	<i>Timer 3 Clock Select</i> 0: Counter/Timer 3 uses the system clock divided by 12. 1: Counter/Timer 3 uses the system clock.
0	T3XCLK	 <i>Timer 3 External Clock Select</i> 0: Timer 3 clock source defined by bit T3M (TMR3CN.1) 1: Timer 3 clock source is the external oscillator input divided by 8. T3M is ignored.

Timer 3 Programming Sequence—Step 1b-2

 Write the auto-reload value into the auto-reload registers (TMR3RLL+TMR3RLH or TMR3RL)

TMR3CN |= 0x02; //-- use SYSCLK (NOT SYSCLK/12) timebase

 If using SYSCLK, select whether divide-by-12 is required. Program the T3M (TMR3CN.1) bit.

TMR3RL = 0xfff6;

Timer 3 Programming Sequence—Step 3 & 4

 Write the starting value for count up sequence into the count registers (TMR3L+TMR3H or TMR3)

TMR3 = 0xffff; //-- set to reload immediately

• Start the timer by setting **TR3** (**TMR3CN.2**) to 1

TMR3CN |= 0x04; //-- Start Timer 3

www.silabs.com/MCU

