
MMoodduullee 1100:: SSttrruuccttuurraall DDeessiiggnn ooff SSeeqquueennttiiaall CCiirrccuuiittss
Revision: September 10, 2007

Contains material © Digilent, Inc. 12 pages

Overview

This lab introduces the founding concepts used in the design of sequential circuits. Sequential circuits
use memory to store information about past inputs, and they use that information to effect future
output changes. Although combinational logic circuits form the backbone of digital circuits, sequential
circuits are used in the vast majority of useful devices – there are more than 100 billion in existence.

Background

Sequential circuit characteristics

Many problems require the detection or generation of a sequence of events. As examples, an
electronic combination-lock door controller must detect when a particular sequence of numbered
buttons has been pressed, and an elevator controller must create a sequence of signals to shut the
doors, move the cabin, and then reopen doors. In such situations, a circuit can only advance to the
next action (or next state) if the current action is known. For example, an elevator should not move
until the doors are shut, and pressing a “2” at some point on a combination lock may or may not
contribute to the unlock sequence. A circuit that operates according to a specific sequence of events
is called a “state machine” or “sequential circuit”. A state machine requires memory to store
information about past actions, and it uses that memory to help determine what action to take next.
Outputs from sequential circuits are functions of the current inputs and memorized past inputs – this is
in contrast to a combinational circuit, where the outputs are strictly a function of the current inputs.

Most memory-containing circuits provide data storage for computing devices. Examples include RAM
arrays for computers, registers and register files for microprocessors, cache memories, accumulators,
status indicators, etc. These memory circuits may use flip-flops, latches, or RAM cells (depending on
the particular application), and they are only used to store data elements in a processor environment.
Memory devices used in sequential circuits do not store data, but rather the operating state of the
circuit. The state of a sequential circuit is defined by the collective contents of all of its memory
devices. The value stored in each memory device in a state machine is referred to as a state variable.
Since a state variable can only take one of two values (‘0’ or ‘1’), a circuit with N state variables must
be in one of 2N states, and each state is defined by a unique N-bit binary number. The memory
devices in a given state machine are collectively referred to as the state register.

The previous lab presented basic memory devices, including the basic cell, the D-latch, and the DFF.
While any of these (or other) memory devices could be used to implement a state register, the
sequential machine design process is greatly simplified if memory devices with certain characteristics
are used. Those characteristics are: the ability to be driven to a stable operating state (‘0’ or ‘1’); a
timing signal that generates the smallest possible sampling window to dictate exactly when new data
can be written; a single data input that directly programs the memory device; and a single reset signal
that can drive the output to ‘0’ regardless of the data or clock input signals. All of these characteristics
are contained in a DFF, and DFF’s are used in practically all sequential circuits. In fact, DFFs can be
used to construct any sequential circuit, and their use will always yield the smallest, simplest
sequential circuits.

A sequential circuit follows the general model shown below. The state register is controlled directly by
an external clock and reset signal. Data inputs to the state register arise from a “next state” logic block
that combines circuit inputs with state register outputs - this feedback of the state variables is the

Module 10: Structural Design of Sequential Circuits Page 2 of 12

reason a sequential circuit can implement a given sequence of events. Without this feedback, future
state register changes could not be based on past events, and so ordered sequences could not be
implemented. The output from the state register is called the “present state”, and the input to the state
register is called the “next state”. At each edge of the clock, the next state is written into the state
register and so becomes the current state.

Like the next-state logic circuit, the output logic circuit contains only combinational devices. In the
figure below, the most general state machine model is shown, with circuit inputs fed forward to the
output logic block where they can be combined with state variables to determine overall circuit
outputs. This most general model is called the “Mealy” model; in the simpler “Moore” model, only the
state variables drive the output logic block, so the feed-forward signal would not be shown (i.e., the
red line would be absent). In simpler state machines like counters and other basic sequence
generators, the output logic block may not be present at all. In such cases, the state register outputs
are used as the overall circuit outputs.

The example timing diagram on the right shows the behavior of a hypothetical state machine (what
the state machine does is not important here – just examine the timing diagram). Note that every
rising clock edge causes a state transition, where the “next state” is clocked into the state register flip-
flops to become the “present state”. Each
state is uniquely identified by the contents of
the state register, called the “state code”.
This example shows three state variables,
so eight distinct states are possible. The
state machine progresses from state 0 to
states 1, 3, 2, 2, 6, and 4 based on the
inputs I0 and I1 and the current state code.
Note also that the outputs Y0, Y1, and Y2
change just after the clock – this is generally
the case, because the state codes change
just after the clock edge, and the state
codes are inputs to the output logic block.

Designing Sequential Circuits

The most difficult task in designing sequential circuits occurs at the very start of the design, in
determining what characteristics of a given problem require sequential operations, and more
particularly, what behaviors must be represented by a unique state. A poor choice of states coupled
with a poor understanding of the problem can make a design lengthy, difficult and error prone. With
better understanding and a better choice of states, the same problem might well be trivial. Whereas it
is relatively straight-forward to describe sequential circuit structure and define applicable engineering
design methods, it is relatively challenging to find analytical methods capable of matching design

Module 10: Structural Design of Sequential Circuits Page 3 of 12

problem requirements to eventual machine states. Restated, we can effectively present how to
design, but we will present what to design through examples and guided design problems. And so this
initial and most important design task, identifying behaviors in the solution-space to a problem that
require unique states, will be presented over time through examples, and you must learn this skill
through experience (some general guidelines will also be presented later). In general, the first step in
designing a new state machine is to identify all behaviors that might need states, and all branching
dependencies between states. Then, as an understanding of the problem and solution evolve, original
choices can be rethought, challenged, and improved.

One method of capturing the behavioral requirements of a state machine is through the creation of a
state table. A state table is nothing more than a truth table that specifies the requirements for the next-
state logic, with inputs coming from the state register and from outside the circuit. The state table lists
all required states, and all possible next states that might follow a given present state.

APS BPS CPS I0 I1

0 0 0

ANS BNS CNS Y0 Y1 Y2

0 0 0 0 1

0 0 0 0 1 0 1 1

0 0 0 1 0 1 0 0

0 0 0 1 1 0 0 0

0 0 1 0 0 0 1 1

I1APS BPS CPS

00 0 0

10 0 0

00 0 1

10 0 1

00 1 0

1 0 0

0 0 1

0 0 1

0 1 0

1 0 1

BPS CPS

APS
00 01 11 10

0

1

ANS

00 01 11 10

0

1

BNS

00 01 11 10

0

1

CNS

00 01 11 10

0

1

00 01 11 10

0

1

00 01 11 10

0

1

D Q

RST

Rst

Clk

D Q

D Q

RST

RST

A

B

C

ANS APS

BNS

CNS

BPS

CPS

NEXT

STATE

LOGIC
OUTPUT

LOGIC

Outputs

Inputs
I0

I1

Y0

Y1

Y2

Y3

Y3

0

1

0

1

1

BPS CPS

APS

BPS CPS

APS

00 01 11 10

0

1

BPS CPS

APS

BPS CPS

APS

BPS CPS

APS

BPS CPS

APS

State

table

Next-state and

Output K-maps

State

register

Y0 Y1

Y2 Y3

Output

table

Module 10: Structural Design of Sequential Circuits Page 4 of 12

State-to-state transitions can be directed by input signals, so the table must list any input signals
required to cause a given transition. The figure above shows an expanded model of a state machine,
and illustrates how the state/truth table can be used to find the next-state logic. In the state table, the
first four rows all show “000” for the state variables. This is because there are two inputs, and a next
state must be specified for all possible combinations of inputs. From the state table, you can deduce
that if the machine is in state “000” and the inputs are both ‘0’, then the next state will be “001”; if the
machine is in state “000” and the inputs are ‘0’ and ‘1’, then the next state will be “011”; and so on.

The output truth table shows how the state variables and any Mealy inputs are combined to form
outputs. In this example, only one of the two inputs (I1) is used by the output logic circuit. The state
and output tables can be combined into a single truth table (also called a state table) to specify all
combinational logic requirements (i.e., both next-state and output requirements) in a single table.

The next-state truth table requires at maximum N input columns for each of N state variables, and M
input columns for each of M circuit inputs. It is not required that all possible states nor all possible
combinations of inputs be used; hence, the next-state truth table need not have all 2(N+M) rows
present. Just which rows are required in the truth table depends on which of the 2N possible states are
used in a given sequential circuit, as well as which inputs are used in each state (again, choosing
states and branching conditions is the more difficult engineering challenge, and several examples in
this and future lab exercises will help illustrate the process). For each row of the truth table, the next-
state output values are assigned according to the desired next state. The use of DFFs in the state
register is assumed, so a '1' in an output column will cause the corresponding DFF to transition to a '1'
on the next clock edge.

Although truth tables (or state tables) can always be used to specify next-state and output logic, they
suffer from a significant drawback: it is difficult to visualize the sequential nature of a circuit’s behavior.
A more useful method exists for specifying next-state and output logic that has a powerful advantage
– it lets us not only specify logic requirements, but also clearly visualize the sequential and/or
algorithmic behavior of a circuit.

Designing sequential circuits using state diagrams

A state diagram represents states with circles, and transitions between states by arrows exiting one
circle and arriving at another. A binary number called the “state code” can be written in the state-circle
to indicate the value stored in the state register when the state machine is in that state. Directed
arrows leaving one state and arriving at another show permissible state transitions. Input variable
requirements for transitions are shown immediately next to each transition; the indicated transition will
only take place if the input conditions shown are present. Transitions (also called branches) occur at
every clock edge; thus, at every edge, the present state is exited, and the next-state entered. Often, it
is required that for some input conditions, the machine hold
in a given state – this holding condition is shown as a
directed arrow leaving and re-entering the same state. In
the partial state diagram shown, the state register contains
three flip-flops: if the state register is storing “000”, then it
will remain in that state if A is ‘0’ at the next clock edge;
otherwise it will transition out of the state if A is ‘1’. The
figure on the right uses VHDL syntax for checking and
assigning logic values. Many texts use conventional logic
equation symbols instead.

When a state diagram is used as a conceptual tool to help arrive at a given problem solution, it is
typically sketched and modified in an iterative fashion. Circles are drawn representing possible states,

S0

0 0 0

A = '1'

A = '0'

Y <= '1'

State
code

State label
(optional)

Output
assignment

Branch and
branch

conditions

Module 10: Structural Design of Sequential Circuits Page 5 of 12

interconnected according to problem requirements, and redrawn and reconnected as the problem and
solution become clearer in the designer's mind. Once a state diagram has been created that captures
the design specifications, a fairly automatic procedure can be applied to create a circuit from the
diagram.

State-to-state transitions occur when the state register is loaded with new next-state values. Since the
state register can only be written on a CLK edge, state-to-state transitions can only occur on the CLK
edge. Thus, the presence of the CLK signal is implied in a state machine, and the CLK signal is not
shown in the state diagram. Likewise, RST or PRE signals are not shown in a state diagram; rather,
an arrow is shown pointing to an initial state that the machine should assume whenever a “reset”
signal is asserted. A ‘0’ bit in the reset state requires the RST input of the corresponding state register
DFF to be connected to the reset signal, and a ‘1’ in the reset state requires the PRE input to be
connected to the reset signal. Thus, RST and PRE signals are not shown in the state diagram – their
presence is implied when an initial state is identified. Only signals that are needed by the next-state or
output logic circuits are shown in the state diagram.

An example of a simple state diagram is shown below. This machine receives input from three buttons
labeled X, Y, and Z, and asserts two signals called "RED" and “GRN”: RED if and only if the proper
three-button-press sequence X-Z-Y is detected; GRN when a new sequence starts. This “early stage”
state diagram does not show state variables or state names. The diagram has evolved by the iterative
process mentioned above – states and branching conditions were added and modified as the needs
of the problem became clearer, until a complete solution was found.

Note that for each state, the branching
conditions take into account all
possible input combinations, and no
ambiguous branching conditions are
present. If some input combinations
are not accounted for, or if branching
conditions indicate more than one next
state, unpredictable operation can
occur. The partial state diagrams
below illustrate these points – in the
diagram on the left, if both A and B are
‘1’, or if C = ‘0’, it is not clear which
branch to take. The need to
unambiguously show possible next
states is important enough that many
texts name two rules: the “sum rule”
states that all inputs leaving a given
state must OR to a logic ‘1’; and the
“mutual exclusion rule” states that any
combination of inputs can indicate only
one next state.

In the figure below, the logic graphs illustrate a simple method for ensuring that both the sum rule and
exclusion rule have been obeyed (these graphs resemble, but are not, K-maps). One graph is needed
to analyze branching conditions from each state, and the number of input variables determines the
graph’s size (input variables are used as the axis variables for the logic graph). Each cell in the graph
represents the unique combination of inputs indicated by the axis variables, and cell entries show the

X = '1'

X='1' or Y='1'

Z='1' and (X='0')
and (Y='0')

X = '0'
(X='0') and (Y='0')

and (Z='0')

(X='0') and

 (Y='0') and (Z='0')

X='1' or

Z='1'

RED <= '1'

RED <= '0'

RED <= '0'RED <= '0'

(Y='1') and (X='0')
and (Z='0')

Reset

GRN <= '1'

GRN <= '0'

GRN <= '0'

GRN <= '0'

Module 10: Structural Design of Sequential Circuits Page 6 of 12

next state for the branch conditions
indicated by the axis variables.
Information can be transferred to the
logic graph to document the next-
states for all branches from a given
state. Each cell should have one and
only one entry – an empty cell
indicates the sum rule has been
violated, and more than one entry
indicates the exclusion rule has been
violated. The state diagram on the left
of the figure above shows both sum
rule and exclusion rule violations, and
so the state diagram must be modified
before further design activities are
attempted. In the example shown, one
possible solution that removes all
“unknowns” and redundancies is
shown. Note that removing ambiguities changes the branching conditions – it is up to the designer to
choose new branches that are consistent with the problem description. In general, after a state
diagram has been sketched, and before any further circuit design activities are undertaken, it is good
design practice to ensure that neither the sum rule nor the exclusion rule are violated.

Output signal names are shown near every state during which they must be asserted. If an output
must to be asserted in consecutive states, the output should be shown on the state diagram in
consecutive states. One method of preparing a state diagram is to show output names only near the
states in which they are asserted. A better method is to show each output driven to ‘1’ or ‘0’ in every
state – this avoids any confusion.

Once the sequential behavior of a problem has been captured with a state diagram, state codes can
be assigned to each state. The state codes show the actual contents of the state register when the
state machine is in that state. For a state diagram with N states, at least log2N state variables are
required so that each state can be assigned a unique number. In the example above, the state
diagram has 4 states, so log24=2 state variables are required. More than the required number of state
variables can be used, but in general, the fewest number of state variables needed are used, since
adding more state variables creates a larger and more complex circuit. Any state code can be
assigned to any state, but in practice certain rules can be used to guide the assignment of state
codes.

In general, state codes are chosen to minimize the required logic in the next
state and/or output logic circuits, or to eliminate timing problems in
sequential circuit outputs. One rule of thumb is to minimize the number of
flip-flops that change state during any state transition. Ideally, only one flip-
flop would change state for any transition in the diagram (a state-to-state
transition where only one state variable changes is known as “unit-distance
coding”). It is usually not possible to create a situation wherein all
transitions are unit-distance coded, but it is generally possible to choose
state codes that yield the highest number of unit-distant coded states. A second rule of thumb is to
match state register bits to output requirements wherever possible. For example, in a four-state
machine with an output that must be asserted in two of the states, it may be possible to assign state
codes such that the output is asserted only when one of the flip-flops is a ‘1’, thereby eliminating the
output logic altogether. The figure on the right above shows both unit-distant coding, and matching an

Module 10: Structural Design of Sequential Circuits Page 7 of 12

output to state codes (i.e., the output is ‘1’ whenever flip-flip #2 is a ‘1’, meaning no output logic is
required).

Structural design of sequential circuits

A state diagram with state codes and complete branching conditions contains all information required
for the design of optimal next-state and output logic circuits. In fact, a state diagram contains exactly
the same information as the state table (or next-state truth table), with the added benefit of showing
sequential flow. By following a few simple rules, the information in a state diagram can be transferred
directly to K-maps so that a minimal next state logic circuit can be found.

The process is illustrated in the three figures below using a state diagram similar to the one presented
earlier (but in this state diagram, the GRN output is now a Mealy output that combines the X and Y
inputs with state codes – see states “01” and “11”). In the first step, all branch conditions are checked
to ensure that neither the sum rule nor the exclusion rule is violated (branch condition checking uses
the logic graphs as shown). State codes are assigned so that a minimum number of bits change
across the set of all state transitions. In this example, it is not possible to use unit-distant coding for all
state transitions, nor is it possible to match outputs to state codes. The state codes shown result in
the greatest number of transitions having unit-distant codes. The second step is to transfer
information from the state diagram to K-maps so that logic circuits can be defined.

In this example, two state variables and two outputs require four K-maps, one for each of the next-
state circuit, and one for each output. The next-state circuits will drive the D inputs of the state-
variable flip-flops, and the output logic circuits will produce outputs based on the state variables and
inputs. The state variables are used as the K-map index variables for all four maps. In the next-state
maps, branch condition inputs are shown as entered variables. Thus, loops in the next-state maps will
be in terms of the state codes (axis variables) and inputs (entered variables). For output maps, a ‘1’ or
‘0’ is placed in a cell to indicate whether an output is asserted in that state; for Mealy outputs, the
input variables that drive the output are placed in the maps as entered variables. The “Rules” below
describe to process of populating K-maps in detail.

Module 10: Structural Design of Sequential Circuits Page 8 of 12

1. Sketch one K-map for each state variable and each output. The state variables are the K-map

index variables (and so K-map size is determined by the number of state variables). Since state
variables are used on the K-map indexes, each cell K-map cell corresponds to a present state.

2. For next state K-maps, enter branch conditions from each present state into the corresponding K-
map cell if and only if the branch leads to a next state where the state DFF being mapped is ‘1’.

3. For Moore model K-maps, enter a ‘1’ in each K-map cell where the output must be asserted; for
Mealy model K-maps, enter a ‘1’ for unconditional outputs, or the variable (or expression) for
conditional outputs in each K-map cell where the output must be asserted.

The process is applied to the state diagram above, resulting in the K-maps shown below.

The third and final step is to create a circuit from the equations obtained from looping the K-maps. A
block diagram of the circuit is shown below – you should recognize the Mealy model schematic.
Following the methods described and with sufficient practice, a wide variety of state machines can be
designed.

Binary Counters

A binary counter is a simple state machine whose outputs are a repeating sequence of n-bit binary
numbers in the range 0 to 2n -1 (see figure below). At each edge of the clock, the output pattern

Module 10: Structural Design of Sequential Circuits Page 9 of 12

changes from a binary number X to binary number X + 1; at the end of the count range (at binary
number 2n -1), the counter rolls over, and the next clock will start the count range over at binary
number 0. Practical binary counters come in 4-bit, 8-bit, and 16-bit sizes, with count ranges from 0 to
16, 256, and 64K respectively. Counter output bits toggle at rate equal to 1/2n of the input clock input
frequency, where n is the bit position (beginning with “1” for the LSB). Counters find many uses in the
design of digital systems. As examples, they are often used to generate sequential addresses into a
memory array, to create unique states for use in a state machine, or to implement a specific delay or
clock-divide ratio.

Counters are often designed with a counter enable input (CEN) so that counting can be suspended
under certain conditions. When CEN is asserted, the counter will increment with each successive
clock edge, and when CEN is not asserted, the counter will simply maintain its current output.
Counters are also often designed with a "terminal count" (TC) output that is asserted as the AND of all
output bits –that is, TC is asserted only when all counter bits are '1'. Note that when all bits are '1', the
counter's next state will be all '0's. Hence the signal name terminal count – when it is asserted, the
counter has reached the end of its range. Both CEN and TC are shown in the timing diagram above.

Smaller counters can be chained together to form larger counters by
using the TC output and CEN input. When the first, or least significant, or
fastest running counter reaches the end of its count range, it will assert
TC. If TC is connected to the CEN of the next counter, then the next
counter will increment by one each time the first counter reaches the end
of its range.

A counter is somewhat unique among state machines in that: the state
variables themselves are the circuit outputs; every state code is used; and
every next-state state code is simply the present-state state code + 1. A
state diagram for a 4-bit binary counter is shown below. The CEN input
must be asserted for a state transition to occur. If DFFs with clock enable
inputs are used, then the CEN input can connect to all DFFs clock enable
inputs. In this case, CEN would not appear in the state diagram since, like
the CLK and RST signals, CEN would not be a part of the next state logic
(rather, it would connect directly to the flip-flops instead).

B3

B0

B1

B2Clk

TC

Cen

Rst

B3

B0

B1

B2Clk

TC

Cen

Rst

Vdd

Rst

Clk

LSB

MSB

Module 10: Structural Design of Sequential Circuits Page 10 of 12

Binary counters in VHDL

A counter circuit can be implemented using structural or behavioral VHDL. A structural counter design
would instantiate the required number of flip-flops as components, and then define next-state logic
circuits to drive each flip-flop D input. This design process is rather tedious when compared to a
behavioral VHDL design, but in return a much better simulation model could be developed. The
structural design of various counters will be covered in depth in a later module.

A behavioral counter can take advantage of the IEEE STD_LOGIC_UNSIGNED library available in
any standard VHDL environment. The SLU library allows the use of standard arithmetic operators with
STD_LOGIC types (see the fourth line in the example below), making a counter design trivial. Note
that the counter output is a vector named B that is defined as an “inout” type so that it can be used on
either side of an assignment operator.

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity counter is

 Port (clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 B : inout STD_LOGIC_VECTOR (3 downto 0));

end counter;

architecture Behavioral of counter is

begin

process (clk, rst)

 begin

 if rst = '1' then B <= "0000";

 elsif (clk'event and clk='1') then

 B <= B + 1;

 end if;

 end process;

end Behavioral;

Behavioral VHDL for a 4-bit binary counter

Module 10: Structural Design of Sequential Circuits Page 11 of 12

A “clock divider” is one of the more common applications for
counters. In this application, a higher frequency clock signal
drives a counter’s clock input, and the counter outputs provide
lower frequency signals at 1/2n of the input frequency, where n
is the counter output bit number (assuming bit #1 is the LSB).
Thus, the LSB of the counter provides a frequency of ½ the
input frequency, bit #2 provides 1/4th the input frequency, bit
#3 1/8th the frequency, and so on. In most technologies, the
output of one flip-flop (such as a counter output bit) can
directly drive the clock inputs of other flip-flops.

A simple divider works well for generating frequencies that are power-of-two divisors of the input
frequency. To create divider frequencies that are any integer divisor of the input frequency, an
equality comparator can be used to compare the count value to a divisor. If a clock with frequency 1/N
is required, then a divisor of N/2 can drive one side of the comparator (with the counter driving the
other side). The output of the comparator can be used as a synchronous reset to restart the counter
from ‘0’ (at twice the desired frequency), and also as a clock-enable for flip-flop that has its output tied
to its input through an inverter (CkloutA in the figure). The output of this flip-flop will produce the
desired frequency with a 50%
duty cycle (duty cycle is the
fraction of time a signal
spends at ‘1’; a 50% duty
cycle means the signal is ‘1’
half the time and ‘0’ half the
time) . Note that a simpler
circuit can produce a clock
frequency of 1/N if a 50%
duty cycle is not required
(and in most applications,
duty cycle is not important).
This simpler circuit resets the
counter when it reaches N
(instead of N/2 as above),
and then uses the MSB of
the counter as the output
clock. This signal will have
the desired frequency, but it
will not have a 50% duty
cycle.

Behavioral VHDL code for a clock divider that divides a 50MHz clock to a 1Hz clock is shown below.
In the example code, note that a constant has been used to define the divider ratio; this constant can
be changed to set any desired divider ratio. Note also the MSB of the counter is used as clkout,
resulting in a clock signal with the correct frequency that does not have a 50% duty cycle.

Simple clock divider

Clock divider for any integer divisor

Module 10: Structural Design of Sequential Circuits Page 12 of 12

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity clkdiv is

 Port (clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 clkout : out STD_LOGIC);

end clkdiv;

architecture Behavioral of clkdiv is

constant cntendval : STD_LOGIC_VECTOR(25 downto 0) := "10111110101111000010000000";

signal cntval : STD_LOGIC_VECTOR (25 downto 0);

begin

process (clk, rst)

 begin

 if rst = '1' then cntval <= "00000000000000000000000000";

 elsif (clk'event and clk='1') then

 if (cntval = cntendval) then cntval <="00000000000000000000000000";

 else cntval <= cntval + 1;

 end if;

 end if;

 end process;

 clkout <= cntval(25);

end Behavioral;

