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Overview 
 
This lab introduces the founding concepts used in the design of sequential circuits. Sequential circuits 
use memory to store information about past inputs, and they use that information to effect future 
output changes. Although combinational logic circuits form the backbone of digital circuits, sequential 
circuits are used in the vast majority of useful devices – there are more than 100 billion in existence. 
 
Background 
 
Sequential circuit characteristics 
 
Many problems require the detection or generation of a sequence of events. As examples, an 
electronic combination-lock door controller must detect when a particular sequence of numbered 
buttons has been pressed, and an elevator controller must create a sequence of signals to shut the 
doors, move the cabin, and then reopen doors. In such situations, a circuit can only advance to the 
next action (or next state) if the current action is known. For example, an elevator should not move 
until the doors are shut, and pressing a “2” at some point on a combination lock may or may not 
contribute to the unlock sequence. A circuit that operates according to a specific sequence of events 
is called a “state machine” or “sequential circuit”. A state machine requires memory to store 
information about past actions, and it uses that memory to help determine what action to take next. 
Outputs from sequential circuits are functions of the current inputs and memorized past inputs – this is 
in contrast to a combinational circuit, where the outputs are strictly a function of the current inputs. 
 
Most memory-containing circuits provide data storage for computing devices. Examples include RAM 
arrays for computers, registers and register files for microprocessors, cache memories, accumulators, 
status indicators, etc. These memory circuits may use flip-flops, latches, or RAM cells (depending on 
the particular application), and they are only used to store data elements in a processor environment. 
Memory devices used in sequential circuits do not store data, but rather the operating state of the 
circuit. The state of a sequential circuit is defined by the collective contents of all of its memory 
devices. The value stored in each memory device in a state machine is referred to as a state variable. 
Since a state variable can only take one of two values (‘0’ or ‘1’), a circuit with N state variables must 
be in one of 2N states, and each state is defined by a unique N-bit binary number. The memory 
devices in a given state machine are collectively referred to as the state register. 
 
The previous lab presented basic memory devices, including the basic cell, the D-latch, and the DFF. 
While any of these (or other) memory devices could be used to implement a state register, the 
sequential machine design process is greatly simplified if memory devices with certain characteristics 
are used. Those characteristics are: the ability to be driven to a stable operating state (‘0’ or ‘1’); a 
timing signal that generates the smallest possible sampling window to dictate exactly when new data 
can be written; a single data input that directly programs the memory device; and a single reset signal 
that can drive the output to ‘0’ regardless of the data or clock input signals. All of these characteristics 
are contained in a DFF, and DFF’s are used in practically all sequential circuits. In fact, DFFs can be 
used to construct any sequential circuit, and their use will always yield the smallest, simplest 
sequential circuits. 
 
A sequential circuit follows the general model shown below. The state register is controlled directly by 
an external clock and reset signal. Data inputs to the state register arise from a “next state” logic block 
that combines circuit inputs with state register outputs - this feedback of the state variables is the  
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reason a sequential circuit can implement a given sequence of events. Without this feedback, future 
state register changes could not be based on past events, and so ordered sequences could not be 
implemented. The output from the state register is called the “present state”, and the input to the state 
register is called the “next state”. At each edge of the clock, the next state is written into the state 
register and so becomes the current state. 
 
Like the next-state logic circuit, the output logic circuit contains only combinational devices. In the 
figure below, the most general state machine model is shown, with circuit inputs fed forward to the 
output logic block where they can be combined with state variables to determine overall circuit 
outputs. This most general model is called the “Mealy” model; in the simpler “Moore” model, only the 
state variables drive the output logic block, so the feed-forward signal would not be shown (i.e., the 
red line would be absent). In simpler state machines like counters and other basic sequence 
generators, the output logic block may not be present at all. In such cases, the state register outputs 
are used as the overall circuit outputs. 

 
The example timing diagram on the right shows the behavior of a hypothetical state machine (what 
the state machine does is not important here – just examine the timing diagram). Note that every 
rising clock edge causes a state transition, where the “next state” is clocked into the state register flip-
flops to become the “present state”. Each 
state is uniquely identified by the contents of 
the state register, called the “state code”. 
This example shows three state variables, 
so eight distinct states are possible. The 
state machine progresses from state 0 to 
states 1, 3, 2, 2, 6, and 4 based on the 
inputs I0 and I1 and the current state code. 
Note also that the outputs Y0, Y1, and Y2 
change just after the clock – this is generally 
the case, because the state codes change 
just after the clock edge, and the state 
codes are inputs to the output logic block. 
 
 
Designing Sequential Circuits 
 
The most difficult task in designing sequential circuits occurs at the very start of the design, in 
determining what characteristics of a given problem require sequential operations, and more 
particularly, what behaviors must be represented by a unique state. A poor choice of states coupled 
with a poor understanding of the problem can make a design lengthy, difficult and error prone. With 
better understanding and a better choice of states, the same problem might well be trivial. Whereas it 
is relatively straight-forward to describe sequential circuit structure and define applicable engineering 
design methods, it is relatively challenging to find analytical methods capable of matching design 
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problem requirements to eventual machine states. Restated, we can effectively present how to 
design, but we will present what to design through examples and guided design problems. And so this 
initial and most important design task, identifying behaviors in the solution-space to a problem that 
require unique states, will be presented over time through examples, and you must learn this skill 
through experience (some general guidelines will also be presented later). In general, the first step in 
designing a new state machine is to identify all behaviors that might need states, and all branching 
dependencies between states. Then, as an understanding of the problem and solution evolve, original 
choices can be rethought, challenged, and improved. 
 
One method of capturing the behavioral requirements of a state machine is through the creation of a 
state table. A state table is nothing more than a truth table that specifies the requirements for the next-
state logic, with inputs coming from the state register and from outside the circuit. The state table lists 
all required states, and all possible next states that might follow a given present state. 
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State-to-state transitions can be directed by input signals, so the table must list any input signals 
required to cause a given transition. The figure above shows an expanded model of a state machine, 
and illustrates how the state/truth table can be used to find the next-state logic. In the state table, the 
first four rows all show “000” for the state variables. This is because there are two inputs, and a next 
state must be specified for all possible combinations of inputs. From the state table, you can deduce 
that if the machine is in state “000” and the inputs are both ‘0’, then the next state will be “001”; if the 
machine is in state “000” and the inputs are ‘0’ and ‘1’, then the next state will be “011”; and so on. 
 
The output truth table shows how the state variables and any Mealy inputs are combined to form 
outputs. In this example, only one of the two inputs (I1) is used by the output logic circuit. The state 
and output tables can be combined into a single truth table (also called a state table) to specify all 
combinational logic requirements (i.e., both next-state and output requirements) in a single table. 
 
The next-state truth table requires at maximum N input columns for each of N state variables, and M 
input columns for each of M circuit inputs. It is not required that all possible states nor all possible 
combinations of inputs be used; hence, the next-state truth table need not have all 2(N+M) rows 
present. Just which rows are required in the truth table depends on which of the 2N possible states are 
used in a given sequential circuit, as well as which inputs are used in each state (again, choosing 
states and branching conditions is the more difficult engineering challenge, and several examples in 
this and future lab exercises will help illustrate the process). For each row of the truth table, the next-
state output values are assigned according to the desired next state. The use of DFFs in the state 
register is assumed, so a '1' in an output column will cause the corresponding DFF to transition to a '1' 
on the next clock edge. 
 
Although truth tables (or state tables) can always be used to specify next-state and output logic, they 
suffer from a significant drawback: it is difficult to visualize the sequential nature of a circuit’s behavior. 
A more useful method exists for specifying next-state and output logic that has a powerful advantage 
– it lets us not only specify logic requirements, but also clearly visualize the sequential and/or 
algorithmic behavior of a circuit. 
 
 
Designing sequential circuits using state diagrams 
 
A state diagram represents states with circles, and transitions between states by arrows exiting one 
circle and arriving at another. A binary number called the “state code” can be written in the state-circle 
to indicate the value stored in the state register when the state machine is in that state. Directed 
arrows leaving one state and arriving at another show permissible state transitions. Input variable 
requirements for transitions are shown immediately next to each transition; the indicated transition will 
only take place if the input conditions shown are present. Transitions (also called branches) occur at 
every clock edge; thus, at every edge, the present state is exited, and the next-state entered. Often, it 
is required that for some input conditions, the machine hold 
in a given state – this holding condition is shown as a 
directed arrow leaving and re-entering the same state. In 
the partial state diagram shown, the state register contains 
three flip-flops: if the state register is storing “000”, then it 
will remain in that state if A is ‘0’ at the next clock edge; 
otherwise it will transition out of the state if A is ‘1’. The 
figure on the right uses VHDL syntax for checking and 
assigning logic values. Many texts use conventional logic 
equation symbols instead.  
 
When a state diagram is used as a conceptual tool to help arrive at a given problem solution, it is 
typically sketched and modified in an iterative fashion. Circles are drawn representing possible states, 
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interconnected according to problem requirements, and redrawn and reconnected as the problem and 
solution become clearer in the designer's mind. Once a state diagram has been created that captures 
the design specifications, a fairly automatic procedure can be applied to create a circuit from the 
diagram. 
 
State-to-state transitions occur when the state register is loaded with new next-state values. Since the 
state register can only be written on a CLK edge, state-to-state transitions can only occur on the CLK 
edge. Thus, the presence of the CLK signal is implied in a state machine, and the CLK signal is not 
shown in the state diagram. Likewise, RST or PRE signals are not shown in a state diagram; rather, 
an arrow is shown pointing to an initial state that the machine should assume whenever a “reset” 
signal is asserted. A ‘0’ bit in the reset state requires the RST input of the corresponding state register 
DFF to be connected to the reset signal, and a ‘1’ in the reset state requires the PRE input to be 
connected to the reset signal. Thus, RST and PRE signals are not shown in the state diagram – their 
presence is implied when an initial state is identified. Only signals that are needed by the next-state or 
output logic circuits are shown in the state diagram. 
 
An example of a simple state diagram is shown below. This machine receives input from three buttons 
labeled X, Y, and Z, and asserts two signals called "RED" and “GRN”: RED if and only if the proper 
three-button-press sequence X-Z-Y is detected; GRN when a new sequence starts. This “early stage” 
state diagram does not show state variables or state names. The diagram has evolved by the iterative 
process mentioned above – states and branching conditions were added and modified as the needs 
of the problem became clearer, until a complete solution was found. 
 
Note that for each state, the branching 
conditions take into account all 
possible input combinations, and no 
ambiguous branching conditions are 
present. If some input combinations 
are not accounted for, or if branching 
conditions indicate more than one next 
state, unpredictable operation can 
occur. The partial state diagrams 
below illustrate these points – in the 
diagram on the left, if both A and B are 
‘1’, or if C = ‘0’, it is not clear which 
branch to take. The need to 
unambiguously show possible next 
states is important enough that many 
texts name two rules: the “sum rule” 
states that all inputs leaving a given 
state must OR to a logic ‘1’; and the 
“mutual exclusion rule” states that any 
combination of inputs can indicate only 
one next state. 
 
In the figure below, the logic graphs illustrate a simple method for ensuring that both the sum rule and 
exclusion rule have been obeyed (these graphs resemble, but are not, K-maps). One graph is needed 
to analyze branching conditions from each state, and the number of input variables determines the 
graph’s size (input variables are used as the axis variables for the logic graph). Each cell in the graph 
represents the unique combination of inputs indicated by the axis variables, and cell entries show the  
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next state for the branch conditions 
indicated by the axis variables. 
Information can be transferred to the 
logic graph to document the next-
states for all branches from a given 
state. Each cell should have one and 
only one entry – an empty cell 
indicates the sum rule has been 
violated, and more than one entry 
indicates the exclusion rule has been 
violated. The state diagram on the left 
of the figure above shows both sum 
rule and exclusion rule violations, and 
so the state diagram must be modified 
before further design activities are 
attempted. In the example shown, one 
possible solution that removes all 
“unknowns” and redundancies is 
shown. Note that removing ambiguities changes the branching conditions – it is up to the designer to 
choose new branches that are consistent with the problem description. In general, after a state 
diagram has been sketched, and before any further circuit design activities are undertaken, it is good 
design practice to ensure that neither the sum rule nor the exclusion rule are violated. 
 
Output signal names are shown near every state during which they must be asserted. If an output 
must to be asserted in consecutive states, the output should be shown on the state diagram in 
consecutive states. One method of preparing a state diagram is to show output names only near the 
states in which they are asserted. A better method is to show each output driven to ‘1’ or ‘0’ in every 
state – this avoids any confusion. 
 
Once the sequential behavior of a problem has been captured with a state diagram, state codes can 
be assigned to each state. The state codes show the actual contents of the state register when the 
state machine is in that state. For a state diagram with N states, at least log2N state variables are 
required so that each state can be assigned a unique number. In the example above, the state 
diagram has 4 states, so log24=2 state variables are required. More than the required number of state 
variables can be used, but in general, the fewest number of state variables needed are used, since 
adding more state variables creates a larger and more complex circuit. Any state code can be 
assigned to any state, but in practice certain rules can be used to guide the assignment of state 
codes. 
 
In general, state codes are chosen to minimize the required logic in the next 
state and/or output logic circuits, or to eliminate timing problems in 
sequential circuit outputs. One rule of thumb is to minimize the number of 
flip-flops that change state during any state transition. Ideally, only one flip-
flop would change state for any transition in the diagram (a state-to-state 
transition where only one state variable changes is known as “unit-distance 
coding”). It is usually not possible to create a situation wherein all 
transitions are unit-distance coded, but it is generally possible to choose 
state codes that yield the highest number of unit-distant coded states.  A second rule of thumb is to 
match state register bits to output requirements wherever possible. For example, in a four-state 
machine with an output that must be asserted in two of the states, it may be possible to assign state 
codes such that the output is asserted only when one of the flip-flops is a ‘1’, thereby eliminating the 
output logic altogether. The figure on the right above shows both unit-distant coding, and matching an 
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output to state codes (i.e., the output is ‘1’ whenever flip-flip #2 is a ‘1’, meaning no output logic is 
required). 
 
 
Structural design of sequential circuits 
 
A state diagram with state codes and complete branching conditions contains all information required 
for the design of optimal next-state and output logic circuits. In fact, a state diagram contains exactly 
the same information as the state table (or next-state truth table), with the added benefit of showing 
sequential flow. By following a few simple rules, the information in a state diagram can be transferred 
directly to K-maps so that a minimal next state logic circuit can be found. 
 
The process is illustrated in the three figures below using a state diagram similar to the one presented 
earlier (but in this state diagram, the GRN output is now a Mealy output that combines the X and Y 
inputs with state codes – see states “01” and “11”). In the first step, all branch conditions are checked 
to ensure that neither the sum rule nor the exclusion rule is violated (branch condition checking uses 
the logic graphs as shown). State codes are assigned so that a minimum number of bits change 
across the set of all state transitions. In this example, it is not possible to use unit-distant coding for all 
state transitions, nor is it possible to match outputs to state codes. The state codes shown result in 
the greatest number of transitions having unit-distant codes. The second step is to transfer 
information from the state diagram to K-maps so that logic circuits can be defined. 

 

 
 

 
In this example, two state variables and two outputs require four K-maps, one for each of the next-
state circuit, and one for each output. The next-state circuits will drive the D inputs of the state-
variable flip-flops, and the output logic circuits will produce outputs based on the state variables and 
inputs. The state variables are used as the K-map index variables for all four maps. In the next-state 
maps, branch condition inputs are shown as entered variables. Thus, loops in the next-state maps will 
be in terms of the state codes (axis variables) and inputs (entered variables). For output maps, a ‘1’ or 
‘0’ is placed in a cell to indicate whether an output is asserted in that state; for Mealy outputs, the 
input variables that drive the output are placed in the maps as entered variables. The “Rules” below 
describe to process of populating K-maps in detail. 
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1. Sketch one K-map for each state variable and each output. The state variables are the K-map 

index variables (and so K-map size is determined by the number of state variables). Since state 
variables are used on the K-map indexes, each cell K-map cell corresponds to a present state. 

2. For next state K-maps, enter branch conditions from each present state into the corresponding K-
map cell if and only if the branch leads to a next state where the state DFF being mapped is ‘1’. 

3. For Moore model K-maps, enter a ‘1’ in each K-map cell where the output must be asserted; for 
Mealy model K-maps, enter a ‘1’ for unconditional outputs, or the variable (or expression) for 
conditional outputs in each K-map cell where the output must be asserted. 

The process is applied to the state diagram above, resulting in the K-maps shown below. 
 

 
 
The third and final step is to create a circuit from the equations obtained from looping the K-maps. A 
block diagram of the circuit is shown below – you should recognize the Mealy model schematic. 
Following the methods described and with sufficient practice, a wide variety of state machines can be 
designed. 
 
 

 
 
 
Binary Counters 
 
A binary counter is a simple state machine whose outputs are a repeating sequence of n-bit binary 
numbers in the range 0 to 2n -1 (see figure below). At each edge of the clock, the output pattern 
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changes from a binary number X to binary number X + 1; at the end of the count range (at binary 
number 2n -1), the counter rolls over, and the next clock will start the count range over at binary 
number 0. Practical binary counters come in 4-bit, 8-bit, and 16-bit sizes, with count ranges from 0 to 
16, 256, and 64K respectively. Counter output bits toggle at rate equal to 1/2n of the input clock input 
frequency, where n is the bit position (beginning with “1” for the LSB). Counters find many uses in the 
design of digital systems. As examples, they are often used to generate sequential addresses into a 
memory array, to create unique states for use in a state machine, or to implement a specific delay or 
clock-divide ratio. 
 

 
 
Counters are often designed with a counter enable input (CEN) so that counting can be suspended 
under certain conditions. When CEN is asserted, the counter will increment with each successive 
clock edge, and when CEN is not asserted, the counter will simply maintain its current output. 
Counters are also often designed with a "terminal count" (TC) output that is asserted as the AND of all 
output bits –that is, TC is asserted only when all counter bits are '1'. Note that when all bits are '1', the 
counter's next state will be all '0's. Hence the signal name terminal count – when it is asserted, the 
counter has reached the end of its range. Both CEN and TC are shown in the timing diagram above. 
 
Smaller counters can be chained together to form larger counters by 
using the TC output and CEN input. When the first, or least significant, or 
fastest running counter reaches the end of its count range, it will assert 
TC. If TC is connected to the CEN of the next counter, then the next 
counter will increment by one each time the first counter reaches the end 
of its range.  
 
A counter is somewhat unique among state machines in that: the state 
variables themselves are the circuit outputs; every state code is used; and 
every next-state state code is simply the present-state state code + 1. A 
state diagram for a 4-bit binary counter is shown below. The CEN input 
must be asserted for a state transition to occur. If DFFs with clock enable 
inputs are used, then the CEN input can connect to all DFFs clock enable 
inputs. In this case, CEN would not appear in the state diagram since, like 
the CLK and RST signals, CEN would not be a part of the next state logic 
(rather, it would connect directly to the flip-flops instead). 
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Binary counters in VHDL 
 
A counter circuit can be implemented using structural or behavioral VHDL. A structural counter design 
would instantiate the required number of flip-flops as components, and then define next-state logic 
circuits to drive each flip-flop D input. This design process is rather tedious when compared to a 
behavioral VHDL design, but in return a much better simulation model could be developed. The 
structural design of various counters will be covered in depth in a later module. 
 
A behavioral counter can take advantage of the IEEE STD_LOGIC_UNSIGNED library available in 
any standard VHDL environment. The SLU library allows the use of standard arithmetic operators with 
STD_LOGIC types (see the fourth line in the example below), making a counter design trivial. Note 
that the counter output is a vector named B that is defined as an “inout” type so that it can be used on 
either side of an assignment operator. 
 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

use IEEE.STD_LOGIC_ARITH.all; 

use IEEE.STD_LOGIC_UNSIGNED.all; 

 

entity counter is 

    Port ( clk : in  STD_LOGIC; 

           rst : in  STD_LOGIC; 

           B : inout  STD_LOGIC_VECTOR (3 downto 0)); 

end counter; 

 

architecture Behavioral of counter is 

 

begin 

 

process (clk, rst)  

  begin 

  if rst = '1' then B <= "0000"; 

    elsif (clk'event and clk='1') then 

      B <= B + 1; 

    end if; 

  end process; 

end Behavioral; 

 

Behavioral VHDL for a 4-bit binary counter 
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A “clock divider” is one of the more common applications for 
counters. In this application, a higher frequency clock signal 
drives a counter’s clock input, and the counter outputs provide 
lower frequency signals at 1/2n of the input frequency, where n 
is the counter output bit number (assuming bit #1 is the LSB). 
Thus, the LSB of the counter provides a frequency of ½ the 
input frequency, bit #2 provides 1/4th the input frequency, bit 
#3 1/8th the frequency, and so on. In most technologies, the 
output of one flip-flop (such as a counter output bit) can 
directly drive the clock inputs of other flip-flops. 
 
A simple divider works well for generating frequencies that are power-of-two divisors of the input 
frequency. To create divider frequencies that are any integer divisor of the input frequency, an 
equality comparator can be used to compare the count value to a divisor. If a clock with frequency 1/N 
is required, then a divisor of N/2 can drive one side of the comparator (with the counter driving the 
other side). The output of the comparator can be used as a synchronous reset to restart the counter 
from ‘0’ (at twice the desired frequency), and also as a clock-enable for flip-flop that has its output tied 
to its input through an inverter (CkloutA in the figure). The output of this flip-flop will produce the 
desired frequency with a 50% 
duty cycle (duty cycle is the 
fraction of time a signal 
spends at ‘1’; a 50% duty 
cycle means the signal is ‘1’ 
half the time and ‘0’ half the 
time) . Note that a simpler 
circuit can produce a clock 
frequency of 1/N if a 50% 
duty cycle is not required 
(and in most applications, 
duty cycle is not important). 
This simpler circuit resets the 
counter when it reaches N 
(instead of N/2 as above), 
and then uses the MSB of 
the counter as the output 
clock. This signal will have 
the desired frequency, but it 
will not have a 50% duty 
cycle. 
 
Behavioral VHDL code for a clock divider that divides a 50MHz clock to a 1Hz clock is shown below. 
In the example code, note that a constant has been used to define the divider ratio; this constant can 
be changed to set any desired divider ratio. Note also the MSB of the counter is used as clkout, 
resulting in a clock signal with the correct frequency that does not have a 50% duty cycle. 
 
 
 
 
 
 
 
 
 

 
 

Simple clock divider 

 
Clock divider for any integer divisor 
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library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

use IEEE.STD_LOGIC_ARITH.all; 

use IEEE.STD_LOGIC_UNSIGNED.all; 

 

entity clkdiv is 

    Port ( clk : in  STD_LOGIC; 

           rst : in  STD_LOGIC; 

           clkout : out  STD_LOGIC); 

end clkdiv; 

 

architecture Behavioral of clkdiv is 

 

constant cntendval : STD_LOGIC_VECTOR(25 downto 0) := "10111110101111000010000000"; 

signal cntval : STD_LOGIC_VECTOR (25 downto 0); 

 

begin 

 

process (clk, rst)  

  begin 

  if rst = '1' then cntval <= "00000000000000000000000000"; 

    elsif (clk'event and clk='1') then 

      if (cntval = cntendval) then cntval <="00000000000000000000000000"; 

        else cntval <= cntval + 1; 

        end if; 

    end if; 

  end process; 

 

  clkout <= cntval(25); 

 

end Behavioral; 

 

 
 
 
 
 


