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Overview 
 
The requirements for new logic circuit designs are often expressed in some loose, informal manner. 
For an informal behavioral description to result in an efficient, well designed circuit that meets the 
stated requirements, appropriate engineering design methods must be developed. As an example, the 
following statement might serve as the starting point for a new design: “a warning light, running from a 
circuit powered by a back-up battery, should be illuminated if the main power is disconnected, or if 
main power is OK but the reserve power source falls below 48V, or if the current exceeds 2 amps, or 
if the current exceeds 1 amp and the reserve falls below 48V”. An initial engineering task is to state 
this requirement more concisely: WL <= (not P) or (P and not R) or C2 or (C1 and R). This equation 
removes all ambiguity from the worded description, and it can also be directly implemented as a logic 
circuit using two 2-input AND gates and one 4-input OR gate. But a simpler 4-input OR circuit that 
behaves identically under all input conditions could also be constructed (WL <= not R or not R or C1 
or C2). Clearly, it would be faster, easier, less costly and less error prone to build the simpler circuit. 
Another engineering task involves analyzing the requirements of a logic design, with the goal of 
finding a minimal expression of any logic relationship. 
 
Before beginning this module, you should… 

• Be familiar with reading and constructing 
basic logic circuits 

• Understand logic equations, and how to 
implement a logic circuit from a logic 
equation 

• Know how to operate Windows computers 
and Windows programs 

After completing this module, you should… 

• Be able to minimize any given logic system 

• Understand CAD tool use in basic circuit design 

• Be able to implement any given combinational 
circuit using the Xilinx ISE schematic editor 

• Be able to simulate any logic circuit 

• Be able to examine the output of a logic 
simulator to verify whether a given circuit has 
been designed correctly 

This module requires: 

• A Windows PC 

• The Xilinx ISE/WebPack software 

• A Digilent circuit board 
 

 

Background 
 
A digital logic circuit consists of a collection of logic gates, the input signals that drive them, and the 
output signals they produce. The behavioral requirements of a logic circuit are best expressed through 
truth tables or logic equations, and any design problem that can be addressed with a logic circuit can 
be expressed in one of these forms. Both of these formalisms define the behavior of a logic circuit – 
how inputs are combined to drive outputs – but they do not specify how to build a circuit that meets 
these requirements. One goal of this module is to define engineering design methods that can 
produce optimum circuits based on behavioral descriptions.  
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Only one truth table exists for any particular logic relationship, but many different logic equations and 
logic circuits can be found to describe and implement the same relationship. Different (but equivalent) 
logic equations and circuits exist for a given truth table because it is always possible to add 
unneeded, redundant logic gates to a circuit without changing its logical output. Take for example the 
logic system introduced in the previous module (reproduced in the figure below). The system’s 
behavior is defined by the truth table in the center of the figure, and it can be implemented by any of 
the logic equations and related logic circuits shown. 
 

 
 
 
All six circuits shown are equivalent, meaning they share the same truth table, but they have different 
physical structures. Image a black box with three input buttons, two LEDs, and two independent 
circuits driving the LEDs. Any of the six circuits shown above could drive either LED, and an observer 
pressing buttons in any combination could not identify which circuit drove which LED. For every 
possible combination of button presses, the LEDs would be illuminated in exactly 
the same manner regardless of which circuit was used. If we have a choice of 
logic circuits for any given logic relationship, it follows we should first define 
which circuit is the best, and develop a method to ensure we find it. 
 
The circuits in the blue boxes above are said to be “canonical” because they 
contain all required minterms and maxterms. Canonical circuits typically use resources inefficiently, 
but they are conceptually simple. Below the canonical circuits are standard POS and SOP circuits – 
these two circuits behave identically to the canonical circuits, but they use fewer resources. Clearly, it 
would be less wasteful of resources to build the standard POS or SOP circuits. And further, replacing 
logic gates in the standard circuits with transistor-minimum gate equivalents (by taking advantage of 
NAND/NOR logic) results in the minimized POS and SOP circuits shown in the green boxes. 
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As engineers, one of our primary goals is to implement circuits efficiently. The most efficient circuit 
can use the fewest number of transistors, or it can operate at the highest speeds, or it can use the 
least amount of power. Often, these three measures of efficiency cannot all be optimized at the same 
time, and designers must trade-off circuit size for speed of operation, or speed for power, or power for 
size, etc. Here, we will define the most efficient circuit as the one that uses the minimum number of 
transistors, and leave speed and power considerations for later consideration. Because we have 
chosen the minimum-transistor measure of efficiency, we will look for “minimum” circuits. The best 
method of determining which of several circuits is the minimum is to count the needed transistors. For 
now, we will use a simpler method – the minimal circuit will be defined as the one that uses the fewest 
number of logic gates (or, if two forms use the same number of gates, then the one that uses the 
fewest number of total inputs to all gates will be considered the simplest). The following examples 
show circuits with the gate/input number shown below. Inverters are not included in the gate or input 
count, because often, they are absorbed into the logic gates themselves. 
 

 
 
A minimal logic equation for a given logic system can be obtained by eliminating all non-essential or 
redundant inputs. Any input that can be removed from the equation without changing the input/output 
relationship is redundant. To find minimal equations, all redundant inputs must be identified and 
removed. In the truth table above, note the SOP terms generated by rows 1 and 3. The A input is ‘0’ in 
both rows, and the C input is ‘1’ in both rows, but the B input is ‘0’ in one row and ‘1’ in the other. 
Thus, for these two rows, the output is a ‘1’ whether B is a ‘0’ or ‘1’ and B is therefore redundant. 
 
The goal in “minimizing” logic systems is to find the simplest form by identifying and removing all 

redundant inputs. For a logic function of N inputs, there are 22N

 logic functions, and for each of these 
functions, there exists a minimum SOP form and a minimum POS form. The SOP form may be more 
minimal than the POS form, or the POS form may be more minimal, or they may be equivalent (i.e., 
they may both require the same number of logic gates and inputs). In general, it is difficult to identify 
the minimum form by simply staring at a truth table. Several methods have evolved to assist with the 
minimization process, including the application of Boolean algebra, the use of logic graphs, and the 
use of searching algorithms. Although any of these methods can be employed using pen and paper, it 
is far easier (and more productive) to implement searching algorithms on a computer. 
 
 
Boolean Algebra 
 
Boolean algebra is perhaps the oldest method used to minimize logic equations. It provides a formal 
algebraic system that can be used to manipulate logic equations in an attempt to find more minimal 
equations. It is a proper algebraic system, with three set elements {‘0’, ‘1’, and ‘A’} (where ‘A’ is any 
variable that can assume the values ‘0’ or ‘1’), two binary operations (and or intersection, or or union), 
and one unary operation (inversion or complementation). Operations between sets are closed under 
the three operations.  The basic laws governing and, or, and inversion operations are easily derived 
from the logic truth tables for those operations. The associative, commutative, and distributive laws 
can be directly demonstrated using truth tables. Only the distributive law truth table is shown in the 
truth table below, with colors used to highlight the columns that show the equivalency of both sides of 
the distributive law equations. Truth tables to demonstrate the simpler associative and commutative 
laws are not shown, but they can be easily derived. 
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Truth tables to verify distributive laws 

A B C A+B B+C A+C A·B B·C A·C A·(B+C) (A·B)+(A·C) A+(B·C) (A+B)·(A+C) 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 1 1 0 0 0 0 0 0 0 

0 1 0 1 1 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 0 1 0 0 0 1 1 

1 0 0 1 0 1 0 0 0 0 0 1 1 

1 0 1 1 1 1 0 0 1 1 1 1 1 

1 1 0 1 1 1 1 0 0 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 

 

 

 
AND’ing operations take precedence over OR’ing operations. Parenthesis can be used to eliminate 
any possible confusion. Thus, the following two sets of equations show equivalent logic equations. 
 

A·B+C = (A·B) + C  A+B·C = A + (B·C) 
 
DeMorgan’s Law provides a formal algebraic statement for the property observed in defining the 
conjugate gate symbols: the same logic circuit can be interpreted as implementing either an AND or 
an OR function, depending how the input and output voltage levels are interpreted. DeMorgan’s law, 
which is applicable to logic systems with any number of inputs, states 
 

(A·B)’ = A’ + B’ (nand form)  and 
(A+B)’ = A’·B’ (nor form). 

 
The laws of Boolean algebra generally hold for XOR 
functions as well, except that DeMorgan’s law takes a 
different form. Recall from the pervious module that the 
XOR function output is asserted whenever an odd 

Associative Laws Commutative Laws Distributive Laws 

(A·B)·C = A·(B·C) = A·B·C A·B·C = B·A·C = ... A·(B+C) = (A·B) + (A·C) 

(A+B)+C = A+(B+C) = A+B+C A+B+C = B+C+A = ... A+(B·C) = (A+B) · (A+C) 

 

 

AND operations OR operations INV operations 

Truth table Laws Truth table Laws Truth table Laws 

0 · 0 = 0 A · 0  = 0 0 + 0 = 0 A + 0  = A 0' = 1 A''  = A 

1 · 0 = 0 A · 1  = A 1 + 0 = 1 A + 1  = 1 1' = 0  

0 · 1 = 0 A · A  = A 0 + 1 = 1 A + A  = A   

1 · 1 = 1 A · A' = 0 1 + 1 = 1 A + A' = 1   
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number of inputs are asserted, and that the XNOR function output is asserted whenever an even 
number of inputs are asserted. Thus, inverting a single input to an XOR function, or inverting its 
output, yields the XNOR function. Likewise, inverting a single input to an XNOR function, or inverting 
its output, yields the XOR function. Inverting an input together with the output, or inverting two inputs, 
changes an XOR function to XNOR, and vice-versa. These observations lead to a version of 
DeMorgan’s Laws that hold for XOR functions of any number of inputs: 
 

F = A xnor B xnor C �  F <= (A  B  C)’ �  F <= A’  B  C �  F <= (A’  B’  C)’ etc. 
F = A xor B xor C �  F <= A  B  C �  F <= A’  B’  C �  F <= (A  B’  C)’ etc. 

 
Note that a single input inversion can be moved to any other signal in a multi-input XOR circuit without 
changing the logical result. Note also that any signal inversion can be replaced with a non-inverted 
signal and an XNOR function. These properties will be useful in later work. 
 
The circuits below also serve illustrate the laws of Boolean Algebra. 
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The following examples illustrate the use of Boolean Algebra to find simpler logic equations. 
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F = A·B·C + A·B·C + A·B·C+ A·B

F = A·B·(C+C) + A·B·(C+1)

F = A·B·(1) + A·B·(1)

F = A·B + A·B

F = B·(A+A)

F = B·(1)

F = B

Factoring

OR law

AND law

Factoring

OR law

AND law

F = (A+B+C)·(A+B+C)·(A+C)

F = (A+B+C)·(A+C)·(B+1)

F = (A+B+C)·(A+C)·(1)

F = (A+B+C)·(A+C)

F = A+((B+C)·(C))

F = A+(B·C+C·C)

F = A+(B·C+0)

F = A+(B·C)

Factoring

OR law

AND law

Factoring

Distributive

AND law

OR law

F = (A    B) + (A    B)F = A·B·C + A·B·C + A·C

F = (A+B+C) + A·B·C + (A+C)

F = A + A + (A·B·C) + B + C + C 

F = A·(1+1+B·C) + B + C

F = A + B + C

F = A·(1) + B + C

DeMorgan’s

Commutative

Factoring

OR law

AND law

F = A·B + A·B + A·B + A·B

F = A·B + A·B + A·B + A·B

F = A·(B+B) + A·(B+B)

F = A·(1) + A·(1)

F = A + A

F = 1

F = (A    B) + A·B·C + A·B

F = A·B + A·B + A·B·C + (A+B)

F = A·B + A + B + A·B + A·B·C

F = A·(B+1) + B + A·B·(1+C)

F = A + B + A·B

F = A + (B+A)·(B+B)

F = A + (B+A)·(1)

F = A + B + A

F = 1

DeMorgan’s

Commutative

Factoring

OR law

Factoring

OR law

AND law

OR law

F = (A+B) + (A+B) + (A+B)

F = (A·B) + (A·B) + (A·B)

F = A·B + A·B + A·B

F = A·B + A·(B+B)

F = A·B + A·(1)

F = A·B + A

F = (A+A)·(B+A)

F = (1)·(B+A)

F = A+B

DeMorgan’s

NOT law

Factoring

OR law

AND law

Factoring

OR law

AND/Commutative

XOR expansion

Commutative

Factoring

OR law

AND law

F = A·B + B·C + A·C

F = A·B + B·C·1 + A·C

F = A·B + B·C·(A+A) + A·C

F = A·B + A·B·C + A·B·C + A·C

F = A·B·(1+C) + A·C·(B+1)

F = A·B·(1) + A·C·(1)

F = A·B + A·C

F = A + A·B

F = (A+A)·(A+B)

F = (1)·(A+B)

F = A+B

F = A · (A+B)

F = (A·A)+(A·B)

F = (0)+(A·B)

F = A·B

Factoring

OR law

AND law

Distributive

AND law

OR law

AND law

OR law

Distributive

OR law

Factoring

AND law

= A+B

= A·B

= A·B + A·C

 
 

 
The last two examples on the left (with the blue boxes) shows relationships that are sometimes called 
the “absorptive” laws, and the example on the right (with the green box) is often called the 
“consensus” law. The so-called absorptive laws are easily demonstrated with other laws, so it is not 
necessary or even convenient to use these relationships as laws – particularly because different 
forms of equations can make it difficult to identify when the law might apply. The consensus law is 
also easily derived, if the “trick” of AND’ing a ‘1’ into the equation, and then expanding that AND into 
an OR relationship is used (this trick is perfectly acceptable, if not entirely obvious).
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Logic Graphs 
 

Truth tables are not very useful for minimizing logic systems, and Boolean algebra has limited utility. 
Logic graphs offer the easiest and most useful pen-and-paper method of minimizing a logic system. A 
logic graph and truth table contain identical information, but patterns that indicate redundant inputs 
can be readily identified in a logic graph. A logic graph is a two (or even three) dimensional construct 
that contains exactly the same information that a truth table does, but arranged in an array structure 
so that all logic domains are contiguous, and logic relationships are therefore easy to identify. 
Information in a truth table can easily be recast into a logic graph. The figure below shows how a 
three-input truth table is mapped to an 8-cell logic graph; the numbers in the logic graph cells are the 
numbers in the truth table rows. 
 
A 1-to-1 correspondence exists between 
the cells in the logic graph and the rows in 
a truth table, and that the cell numbers 
have been arranged so that each logic 
variable domain is represented by a group 
of four connected cells (the A domain is a 
row of four cells, and the B and C domains 
are squares of four cells). This particular 
arrangement of cells in the logic graph 
isn’t the only one possible, but it has the 
useful property of having each domain 
overlap the others in exactly two cells. As can be seen in the 
figure, the logic domains are contiguous in the logic graph, but 
they are not contiguous in the truth table. It is the contiguous 
logic domains in the logic graphs that make them so useful. 
 
Logic graphs are typically shown with variable names near the 
graph borders, and 1’s and 0’s near cell rows and columns to 
indicate the value of the variables for the rows and columns. 
The logic graph below shows a typical appearance. Note that 
the variable values on the logic graph edges can be read from 
left to right to find the truth table row that corresponds to a 
given cell. For example, the A = 1, B = 0, C= 1 row in the truth 
table below is shaded, and that row corresponds to the shaded 
cell in the logic graph. 
 
The information in the output column of the 
truth table below has been transferred row-for-
cell into the cells of the logic graph, and so the 
truth table and logic graph contain identical 
information. In the logic graph, 1’s that appear 
adjacent to one another (either vertically or 
horizontally) are said to be “logically adjacent”, 
and these adjacencies represent opportunities 
to find and eliminate redundant inputs. Logic 
graphs used in this manner are called 
Karnaugh Maps (or just K-Maps) after their 
inventor. 
 
The figure below shows a four-input truth table mapped to a 16-cell K-map.  
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The key to using K-maps to find and eliminate redundant inputs from a logic system is to identify 
“groups” of 1’s for SOP equations or groups of 0’s for POS equations. A valid group must be a “power 
of 2” size (meaning that only groups of 1, 2, 4, 8, or 16 are allowed), and it must be a square or 
rectangle, but not a diagonal, dogleg, or other irregular shape. Each ‘1’ in a SOP K-map must 
participate in at least one group, and each ‘1’ must be in the largest possible group (and likewise for 
0’s in POS maps). The requirement that all 1’s (or 0’s) are grouped in the largest possible group may 
mean that some 1’s (or 0’s) are part of several groups. In practice, loops are drawn on a K-map to 
encircle the 1’s (or 0’s) in a given group. Once all 1’s (or 0’s) in a map have been grouped in the 
largest possible loops, the grouping process is complete and a logic equation can be read directly 
from the K-map. If the procedure is performed correctly, a minimal logic equation is guaranteed. 
 
SOP logic equations are read from a K-map by writing product terms defined by each loop, and then 
OR’ing the product terms together. Likewise, POS logic equations are read from a K-map by writing 
sum terms defined by each loop, and then AND’ing all the sum terms together. A loop term is defined 
by the logic variables on the periphery of the K-map. SOP loop terms use minterm codes (i.e., the ‘0’ 
domain of a variable results in that variable being complemented in the product term for the loop), and 
POS loop terms use maxterm codes (i.e., the ‘1’ domain of an input variable results in that variable 
being complemented in the sum term for the loop). If a loop spans across both the ‘1’ and ‘0’ domain 
of a given logic variable, then that variable is redundant and it does not appear in the loop term. 
Restated, a logic variable is included in a loop term only if the loop is contained entirely in the ‘1’ or ‘0’ 
domain of that variable. The edges of maps are continuous with the opposite edges, so loops can 
span from one edge to the other without grouping 1’s or 0’s in the middle (the examples below 
illustrate this process). 
 
K-maps can be used for finding minimal logic expressions for systems of 2, 3, 4, 5, or 6 input 
variables (beyond 6 variables and the technique becomes unwieldy). For systems of 2, 3, or 4 
variables, the technique is straightforward, and it is illustrated in several examples below. In general, 
the looping process should be started with 1’s (or 0’s) that can only be grouped in one possible loop. 
As loops are drawn, ensure that all 1’s (or 0’s) are in at least one loop, and that no redundant loops 
exist (a redundant loop contains 1’s or 0’s that are all already grouped in other loops).  
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                  (A+C+D)·(B+D)  
 
Minterm SOP equations and maxterm POS equations can be readily transferred into K-maps by 
simply placing 1’s (for SOP equations) and 0’s (POS) in the cells listed in the equation. For SOP 
equations, any cell not listed as receiving a ‘1’ gets a ‘0’, and vice-versa for POS equations. The 
figures below illustrate the process. 
 

 
 
For systems of 5 or 6 variables, two different methods can be used. One method uses 4-variable K-
maps nested in 1 or 2 variable “super maps”, and the other method uses “map entered variables”. The 
super-map technique for finding minimum equations for 5 or 6 variables closely follows the technique 
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A B C F G 

0 0 0 0 1 

0 0 1 1 φ 

0 1 0 φ 1 

0 1 1 0 φ 

1 0 0 1 1 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 φ 0 

 

  B C 

   A 
00 01 11 10 

  0 0 1 1 φ 

  1 0 1 φ 0 

      F      

  B C 

   A 
00 01 11 10 

  0 1 φ φ 1 

  1 1 0 0 0 

     G       

used for 2, 3, or 4 variables, but 4-variable maps must be nested into 1 or 2-variable super-maps as 
shown below. Logic adjacencies between the sub-maps can be discovered by identifying 1’s (or 0’s) 
in like-numbered cells in adjacent super-map cells. The patterns in the maps show examples of 
adjacent cells in the K-maps. SOP equations for the maps are shown – note that the “super map” 
variables do not appear in product terms when 1’s are located in like-numbered cells in the sub maps. 

 
 
 
Incompletely specified logic functions (don’t cares) 
 
Situations can arise where a circuit has N input signals, but not all 2N combinations of inputs are 
possible. Or, if all 2N combinations of inputs are possible, some combinations might be irrelevant. For 
example, consider a television remote control unit that can switch between control of a television, 
VCR, or DVD. Some remotes might have operational modes where buttons like “fast forward” are 
physically switched out of the circuit; other remotes may use modes where such buttons are left in the 
circuit, but their functions are irrelevant. In either case, some combinations of input signals are 
completely inconsequential to the 
proper operation of the circuit. It is 
possible to take advantage of these 
situations to further minimize logic 
circuits. 
 
Input combinations that cannot possibly 
effect the proper operation of a logic 
system can be allowed to drive circuit 
outputs high or low – literally, the 
designer doesn’t care what the circuit 
response is to these impossible or 
irrelevant inputs. This information is 
encoded by using a special “don’t care” 
symbol in truth tables and K-maps to 
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indicate that the signal can be a ‘1’ or a ‘0’ without effecting circuit operation. Some sources use an 
“X” to indicate a don’t care, but this can be confused with a signal named “X”. It is perhaps a better 

practice to use a symbol that is not normally associated with signal names – here, we choose the “φ” 
symbol. 
 
The truth table on the right shows two output functions (F and G) for the same three inputs. Both 
outputs have two rows where the output is a don’t care. This same information is also shown in the 
associated K-maps. In the “F” K-map, the designers “don’t care” if the output is a ‘1’ or a ‘0’ for 
minterms 2 and 7, and so cells 2 and 7 in the K-map can be looped as either a ‘1’ or a ‘0’. Clearly, 
looping cell 7 as a ‘1’ and cell 2 as a ‘0’ results in a more minimal logic circuit. In this case, both an 
SOP and POS looping would result in identical circuits.  
 
In the “G” K-map, the don’t cares in cells 1 and 3 can be looped as either a ‘1’ or a ‘0’. In an SOP 
looping, both don’t cares would be looped as 1’s, giving a logic function of “G = A’ + B’·C’”. In a POS 
looping, however, cells 1 and 3 would be looped as 0’s, giving the logic function “G = C’·(A’ + B’). A 
little Boolean algebra reveals these two equations are not algebraically equal. Often, the SOP and 
POS forms of equations looped from K-maps that contain don’t cares are not algebraically equal 
(although they would perform identically in the circuit). The following examples illustrate the use of 
don’t cares in K-maps. 
 
 

 
 
 
Entered Variables 
 
Truth tables provide the best mechanism for completely specifying the behavior of a given 
combinational logic circuit, and K-maps provide the best mechanism for visualizing and minimizing the 
input-output relationships of digital logic circuits. So far, we have shown input variables across the top 
left of a truth table and around the periphery of K-maps. This allows every state of an output signal to 
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be defined as a function of the input patterns of 0’s and 1’s on a given row in a truth table, or as the 
binary coding for a given K-map cell. Without any loss of information, truth tables and K-maps can be 
translated into a more compact form by moving input variables from the top-left of a truth table to the 
output column, or from outside the K-map to inside the cells of a K-map. Although it will not be clear 
until later modules, the use of entered variables and compressed truth tables and K-maps often 
makes a multi-variable system much easier to visualize and minimize. 
 
The translation mechanics are illustrated in the figures below, where a 16-row truth table is 
compressed into both 8-row and 4-row truth tables. In the 8-row truth table, the variable D is no longer 
used to identify an input column. Instead, it appears in the output column, where it encodes the 
relationship between two rows of output logic values and the D input. In the 4-row truth table, 
variables C and D are no longer used to identify an input column, but rather in the output column 
where they encode the relationship between four rows of the output logic values and the C and D 
inputs. 

 
The 4-cell K-map is reproduced to the right, this time showing the 
implied sub-maps that illustrate the relationship between C and D for 
each of the four unique values of the A and B variables. For any 
entered variable K-map, thinking of (or actually sketching) the sub-
maps can help identify the correct encoding for the entered 
variables. Note that truth table row numbers can be mapped to cells 
in the sub-maps by reading the K-map index codes, starting with the 
super-map code, and appending the sub-map code. For example, 
the shaded box in the sub-map is in box number 1110. 
 
This same map compression is illustrated below, showing the 
mapping from non-compressed K-maps directly to compressed K-
maps. The colors show how cells in the uncompressed map are 
translated to the cells in the compressed map. Note that two cells in the 16-cell map are compressed 
into a single cell in the 8-cell map, and that four cells in the 16-cell map are compressed into a single 
cell in the 4-cell map. 
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D

= C+D
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Minterm SOP equations and maxterm POS equations can also be translated directly into entered 
variable K-maps as shown in the illustration below (the smaller numbers at the bottom of K-map cells 
show the minterm or maxterm numbers assigned to that cell). The minimum number of input variables 
is assumed when encoding minterms or maxterms into the K-maps. For example, if the largest 
minterm present is 14, four input variables are assumed. 
 

 
 
 
Looping entered variable K-maps follows the same general principles as looping “1-0” maps – optimal 
groupings of 1’s and entered variables (EVs) are sought for SOP circuits, and optimal groupings of 0’s 
and EVs are sought for POS circuits. The rules are similar: all EVs and all 1’s (or 0’s) must be 
grouped in the largest possible “power of 2” sized rectangular or square grouping, and the process is 
complete when all EV’s and all 1’s (or 0’s) are included in an optimal loop. The differences are that 
similar EVs can be included in loops by themselves or with 1’s (or 0’s), and care must be taken when 
looping cells with 1’s (or 0’s), because a ‘1’ (or ‘0’) indicates that all possible combinations of EV’s are 
present in that map cell, and loops that include 1’s (or 0’s) together with EV’s often include only a 
subset of the possible combinations of the EV’s (this is illustrated in the figures below). Looping an EV 
K-map is complete when all minterms or maxterms are contained in an adequate group. Perhaps the 
most challenging aspect is to ensure that all possible combinations of EV’s have been accounted for 
in cells that contain 1’s (or 0’s). 
 
To help understand looping in EV K-maps, it may be helpful to think of the sub-maps implied by every 
K-map cell. As shown in the figures below, the variables in K-map cells can arise from looping the “1-
0” information entered into cells in the implied sub-maps. A looping of information in adjacent cells in 
the EV K-map can include 1’s (or 0’s) in the sub-maps that appear in the same positions in the sub-
maps. 
 
When reading the loop equations, the SOP product terms (or POS sum terms) for each loop must 
include the variables that define the loop domain and the EVs contained within the loop. For example, 
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in the first example below, the first SOP term A’·B’·D includes the loop domain A’·B’ and the entered 
variable D. 
 
 

 
 
 
Cells in entered variable maps might contain a single entered variable or a logic expression of two or 
more variables.  When looping cells that contain logic expressions, it helps to recognize the 
differences in SOP and POS looping mechanics. As compared to a single EV in a K-map cell, a 
product term in a cell represents a smaller SOP domain, because the more AND’ed variables in a 
product term, the smaller the defined logic domain. A sum term in a cell represents a larger SOP 
domain, because the more OR’ed variables in a sum term, the larger the defined logic domain. When 
looping SOP equations from an EV map, cells containing product terms have fewer 1’s in their sub-
maps than cells that contain single EV’s, and cells with sum terms contain more 1’s. Similarly, when 
looping POS equations from an EV map, cells containing sum terms have fewer 0’s in their sub-maps 
than cells that contain single EV’s, and cells with product terms contain more 0’s. 
 
Don’t cares in entered variable K-maps serve the same purpose as they did in “1-0” maps; they 
indicate input conditions that cannot occur or that are irrelevant, and they can be included in 
groupings of 1’s, 0’s, or entered variables as needed to minimize logic. As shown in the examples 
below, a given don’t care can be taken as a ‘1’, ‘0’, or entered variable as needed for any particular 
loop. 
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Computer-Based Logic Minimization Algorithms 
 

Several logic minimization algorithms have been developed over the years, and many of them have 
been incorporated into computer-based logic minimization programs. Some of these programs, such 
as those based on the Quine-McCluskey algorithm, find a true minimum by exhaustively checking all 
possibilities. Programs based on these exhaustive search algorithms can require long execution 
times, especially when dealing with large numbers of inputs and outputs. Other programs, such as the 
popular Espresso program developed at UC Berkeley, use heuristic (or rule-based) methods instead 
of exhaustive searches. Although these programs run much faster (especially on moderate to large 
systems), they terminate upon finding a "very good" solution that may not always be minimal. In many 
real-world engineering situations, finding a greatly minimized solution quickly is often the best 
approach. 
 
Espresso is by far the most widely used minimization algorithm, followed by Quine-McCluskey. These 
two algorithms will be briefly introduced, but not explained. Many good references exist in various 
texts and on the web that explain exactly how the algorithms function – you are encouraged to seek 
out and read these references to further your understanding of logic minimization techniques. 
 
The Quine-McCluskey logic minimization algorithm was developed in the mid-1950's, and it was the 
first computer-based algorithm that could find truly minimal logic expressions. The algorithm finds all 
possible groupings of 1’s through an exhaustive search, and then from that complete collection finds a 
minimal set that covers all minterms in the on-set (the on-set is the set of all minterms for which the 
function output is asserted). Because this method searches for all possible solutions, and then selects 
the best, it can take a fair amount of computing time, In fact, even on modern computers, this 
algorithm can execute for minutes to hours on moderately sized logic systems. Many free-ware 
programs exist that use the Q-M algorithm to minimize a single equation or multiple equations 
simultaneously. 
 
Espresso was first developed in the 1960’s, and it has become the most commonly used logic 
minimization program used in industry. Espresso is strictly “rule-based”, meaning that it does not 
search for a guaranteed minimum solution (although in many cases, the true minimum is found). An 
espresso input file must be created before espresso can be run. The input file is essentially a truth 
table that lists all the minterms in the non-minimized function. Espresso returns an output file that 
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shows all the terms required in the output expression. Espresso can minimize a single logic function 
of several variables, or many logic functions of several variables. Espresso makes several simplifying 
assumptions about a logic system, and it therefore runs very quickly, even for large systems. 
 
Digimin is a windows wrapper that allows both Boozer and Espresso to be run in a Windows 
environment. Digimin also provides an easy to use truth-table entry mechanism and provides output in 
the form of SOP and POS equations. Digimin, available from the class website, is easy and intuitive to 
use – simply run it, add functions (by selecting Action -> add function), and then add variables to the 
functions (by selecting Action -> add variables). When all functions and variables have been added, 
simply choose the MIN function and the Espresso or Boozer algorithm. 
 
Since the1990’s, Hardware Definition Languages (HDLs) and their associated design tools and 
methods have been replacing all other forms of digital circuit design. Today, the use of HDLs in 
virtually all aspects of digital circuit design is considered standard practice. We will introduce the use 
HDLs in a later module, and as we will see, any circuit defined in an HDL environment is automatically 
minimized before it is implemented. This feature allows a designer to focus strictly on a circuit’s 
behavior, without getting slowed down in the details of finding efficient circuits. Although it is important 
to understand the structure and function of digital circuits, experience has shown that engineers can 
be far more productive by specifying only a circuit’s behavior, and relying on computer-based tools to 
find efficient circuit structures that can implement those behaviors. 


