
MMoodduullee 44:: LLooggiicc MMiinniimmiizzaattiioonn
Revision: August 30, 2007

Contains material © Digilent, Inc. 16 pages

Overview

The requirements for new logic circuit designs are often expressed in some loose, informal manner.
For an informal behavioral description to result in an efficient, well designed circuit that meets the
stated requirements, appropriate engineering design methods must be developed. As an example, the
following statement might serve as the starting point for a new design: “a warning light, running from a
circuit powered by a back-up battery, should be illuminated if the main power is disconnected, or if
main power is OK but the reserve power source falls below 48V, or if the current exceeds 2 amps, or
if the current exceeds 1 amp and the reserve falls below 48V”. An initial engineering task is to state
this requirement more concisely: WL <= (not P) or (P and not R) or C2 or (C1 and R). This equation
removes all ambiguity from the worded description, and it can also be directly implemented as a logic
circuit using two 2-input AND gates and one 4-input OR gate. But a simpler 4-input OR circuit that
behaves identically under all input conditions could also be constructed (WL <= not R or not R or C1
or C2). Clearly, it would be faster, easier, less costly and less error prone to build the simpler circuit.
Another engineering task involves analyzing the requirements of a logic design, with the goal of
finding a minimal expression of any logic relationship.

Before beginning this module, you should…

• Be familiar with reading and constructing
basic logic circuits

• Understand logic equations, and how to
implement a logic circuit from a logic
equation

• Know how to operate Windows computers
and Windows programs

After completing this module, you should…

• Be able to minimize any given logic system

• Understand CAD tool use in basic circuit design

• Be able to implement any given combinational
circuit using the Xilinx ISE schematic editor

• Be able to simulate any logic circuit

• Be able to examine the output of a logic
simulator to verify whether a given circuit has
been designed correctly

This module requires:

• A Windows PC

• The Xilinx ISE/WebPack software

• A Digilent circuit board

Background

A digital logic circuit consists of a collection of logic gates, the input signals that drive them, and the
output signals they produce. The behavioral requirements of a logic circuit are best expressed through
truth tables or logic equations, and any design problem that can be addressed with a logic circuit can
be expressed in one of these forms. Both of these formalisms define the behavior of a logic circuit –
how inputs are combined to drive outputs – but they do not specify how to build a circuit that meets
these requirements. One goal of this module is to define engineering design methods that can
produce optimum circuits based on behavioral descriptions.

Module #4: Logic Minimization Page 2 of 16

Only one truth table exists for any particular logic relationship, but many different logic equations and
logic circuits can be found to describe and implement the same relationship. Different (but equivalent)
logic equations and circuits exist for a given truth table because it is always possible to add
unneeded, redundant logic gates to a circuit without changing its logical output. Take for example the
logic system introduced in the previous module (reproduced in the figure below). The system’s
behavior is defined by the truth table in the center of the figure, and it can be implemented by any of
the logic equations and related logic circuits shown.

All six circuits shown are equivalent, meaning they share the same truth table, but they have different
physical structures. Image a black box with three input buttons, two LEDs, and two independent
circuits driving the LEDs. Any of the six circuits shown above could drive either LED, and an observer
pressing buttons in any combination could not identify which circuit drove which LED. For every
possible combination of button presses, the LEDs would be illuminated in exactly
the same manner regardless of which circuit was used. If we have a choice of
logic circuits for any given logic relationship, it follows we should first define
which circuit is the best, and develop a method to ensure we find it.

The circuits in the blue boxes above are said to be “canonical” because they
contain all required minterms and maxterms. Canonical circuits typically use resources inefficiently,
but they are conceptually simple. Below the canonical circuits are standard POS and SOP circuits –
these two circuits behave identically to the canonical circuits, but they use fewer resources. Clearly, it
would be less wasteful of resources to build the standard POS or SOP circuits. And further, replacing
logic gates in the standard circuits with transistor-minimum gate equivalents (by taking advantage of
NAND/NOR logic) results in the minimized POS and SOP circuits shown in the green boxes.

Module #4: Logic Minimization Page 3 of 16

As engineers, one of our primary goals is to implement circuits efficiently. The most efficient circuit
can use the fewest number of transistors, or it can operate at the highest speeds, or it can use the
least amount of power. Often, these three measures of efficiency cannot all be optimized at the same
time, and designers must trade-off circuit size for speed of operation, or speed for power, or power for
size, etc. Here, we will define the most efficient circuit as the one that uses the minimum number of
transistors, and leave speed and power considerations for later consideration. Because we have
chosen the minimum-transistor measure of efficiency, we will look for “minimum” circuits. The best
method of determining which of several circuits is the minimum is to count the needed transistors. For
now, we will use a simpler method – the minimal circuit will be defined as the one that uses the fewest
number of logic gates (or, if two forms use the same number of gates, then the one that uses the
fewest number of total inputs to all gates will be considered the simplest). The following examples
show circuits with the gate/input number shown below. Inverters are not included in the gate or input
count, because often, they are absorbed into the logic gates themselves.

A minimal logic equation for a given logic system can be obtained by eliminating all non-essential or
redundant inputs. Any input that can be removed from the equation without changing the input/output
relationship is redundant. To find minimal equations, all redundant inputs must be identified and
removed. In the truth table above, note the SOP terms generated by rows 1 and 3. The A input is ‘0’ in
both rows, and the C input is ‘1’ in both rows, but the B input is ‘0’ in one row and ‘1’ in the other.
Thus, for these two rows, the output is a ‘1’ whether B is a ‘0’ or ‘1’ and B is therefore redundant.

The goal in “minimizing” logic systems is to find the simplest form by identifying and removing all

redundant inputs. For a logic function of N inputs, there are 22N

 logic functions, and for each of these
functions, there exists a minimum SOP form and a minimum POS form. The SOP form may be more
minimal than the POS form, or the POS form may be more minimal, or they may be equivalent (i.e.,
they may both require the same number of logic gates and inputs). In general, it is difficult to identify
the minimum form by simply staring at a truth table. Several methods have evolved to assist with the
minimization process, including the application of Boolean algebra, the use of logic graphs, and the
use of searching algorithms. Although any of these methods can be employed using pen and paper, it
is far easier (and more productive) to implement searching algorithms on a computer.

Boolean Algebra

Boolean algebra is perhaps the oldest method used to minimize logic equations. It provides a formal
algebraic system that can be used to manipulate logic equations in an attempt to find more minimal
equations. It is a proper algebraic system, with three set elements {‘0’, ‘1’, and ‘A’} (where ‘A’ is any
variable that can assume the values ‘0’ or ‘1’), two binary operations (and or intersection, or or union),
and one unary operation (inversion or complementation). Operations between sets are closed under
the three operations. The basic laws governing and, or, and inversion operations are easily derived
from the logic truth tables for those operations. The associative, commutative, and distributive laws
can be directly demonstrated using truth tables. Only the distributive law truth table is shown in the
truth table below, with colors used to highlight the columns that show the equivalency of both sides of
the distributive law equations. Truth tables to demonstrate the simpler associative and commutative
laws are not shown, but they can be easily derived.

Module #4: Logic Minimization Page 4 of 16

Truth tables to verify distributive laws

A B C A+B B+C A+C A·B B·C A·C A·(B+C) (A·B)+(A·C) A+(B·C) (A+B)·(A+C)

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0 0 0 0

0 1 1 1 1 1 0 1 0 0 0 1 1

1 0 0 1 0 1 0 0 0 0 0 1 1

1 0 1 1 1 1 0 0 1 1 1 1 1

1 1 0 1 1 1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

AND’ing operations take precedence over OR’ing operations. Parenthesis can be used to eliminate
any possible confusion. Thus, the following two sets of equations show equivalent logic equations.

A·B+C = (A·B) + C A+B·C = A + (B·C)

DeMorgan’s Law provides a formal algebraic statement for the property observed in defining the
conjugate gate symbols: the same logic circuit can be interpreted as implementing either an AND or
an OR function, depending how the input and output voltage levels are interpreted. DeMorgan’s law,
which is applicable to logic systems with any number of inputs, states

(A·B)’ = A’ + B’ (nand form) and
(A+B)’ = A’·B’ (nor form).

The laws of Boolean algebra generally hold for XOR
functions as well, except that DeMorgan’s law takes a
different form. Recall from the pervious module that the
XOR function output is asserted whenever an odd

Associative Laws Commutative Laws Distributive Laws

(A·B)·C = A·(B·C) = A·B·C A·B·C = B·A·C = ... A·(B+C) = (A·B) + (A·C)

(A+B)+C = A+(B+C) = A+B+C A+B+C = B+C+A = ... A+(B·C) = (A+B) · (A+C)

AND operations OR operations INV operations

Truth table Laws Truth table Laws Truth table Laws

0 · 0 = 0 A · 0 = 0 0 + 0 = 0 A + 0 = A 0' = 1 A'' = A

1 · 0 = 0 A · 1 = A 1 + 0 = 1 A + 1 = 1 1' = 0

0 · 1 = 0 A · A = A 0 + 1 = 1 A + A = A

1 · 1 = 1 A · A' = 0 1 + 1 = 1 A + A' = 1

Module #4: Logic Minimization Page 5 of 16

number of inputs are asserted, and that the XNOR function output is asserted whenever an even
number of inputs are asserted. Thus, inverting a single input to an XOR function, or inverting its
output, yields the XNOR function. Likewise, inverting a single input to an XNOR function, or inverting
its output, yields the XOR function. Inverting an input together with the output, or inverting two inputs,
changes an XOR function to XNOR, and vice-versa. These observations lead to a version of
DeMorgan’s Laws that hold for XOR functions of any number of inputs:

F = A xnor B xnor C � F <= (A B C)’ � F <= A’ B C � F <= (A’ B’ C)’ etc.
F = A xor B xor C � F <= A B C � F <= A’ B’ C � F <= (A B’ C)’ etc.

Note that a single input inversion can be moved to any other signal in a multi-input XOR circuit without
changing the logical result. Note also that any signal inversion can be replaced with a non-inverted
signal and an XNOR function. These properties will be useful in later work.

The circuits below also serve illustrate the laws of Boolean Algebra.

Vdd

GND

A

These are

equivalent

A

A

AND/OR Laws

Distributive

Laws

A

B

C

These are

equivalent

B C

GND

A

A

A

Vdd

A

Vdd

These are

equivalent

These are

equivalent

A B C

Commutative

Laws

A

B
C

These are

equivalent

B

C

A

B
C

These are

equivalent

Associative

Laws

The following examples illustrate the use of Boolean Algebra to find simpler logic equations.

Module #4: Logic Minimization Page 6 of 16

F = A·B·C + A·B·C + A·B·C+ A·B

F = A·B·(C+C) + A·B·(C+1)

F = A·B·(1) + A·B·(1)

F = A·B + A·B

F = B·(A+A)

F = B·(1)

F = B

Factoring

OR law

AND law

Factoring

OR law

AND law

F = (A+B+C)·(A+B+C)·(A+C)

F = (A+B+C)·(A+C)·(B+1)

F = (A+B+C)·(A+C)·(1)

F = (A+B+C)·(A+C)

F = A+((B+C)·(C))

F = A+(B·C+C·C)

F = A+(B·C+0)

F = A+(B·C)

Factoring

OR law

AND law

Factoring

Distributive

AND law

OR law

F = (A B) + (A B)F = A·B·C + A·B·C + A·C

F = (A+B+C) + A·B·C + (A+C)

F = A + A + (A·B·C) + B + C + C

F = A·(1+1+B·C) + B + C

F = A + B + C

F = A·(1) + B + C

DeMorgan’s

Commutative

Factoring

OR law

AND law

F = A·B + A·B + A·B + A·B

F = A·B + A·B + A·B + A·B

F = A·(B+B) + A·(B+B)

F = A·(1) + A·(1)

F = A + A

F = 1

F = (A B) + A·B·C + A·B

F = A·B + A·B + A·B·C + (A+B)

F = A·B + A + B + A·B + A·B·C

F = A·(B+1) + B + A·B·(1+C)

F = A + B + A·B

F = A + (B+A)·(B+B)

F = A + (B+A)·(1)

F = A + B + A

F = 1

DeMorgan’s

Commutative

Factoring

OR law

Factoring

OR law

AND law

OR law

F = (A+B) + (A+B) + (A+B)

F = (A·B) + (A·B) + (A·B)

F = A·B + A·B + A·B

F = A·B + A·(B+B)

F = A·B + A·(1)

F = A·B + A

F = (A+A)·(B+A)

F = (1)·(B+A)

F = A+B

DeMorgan’s

NOT law

Factoring

OR law

AND law

Factoring

OR law

AND/Commutative

XOR expansion

Commutative

Factoring

OR law

AND law

F = A·B + B·C + A·C

F = A·B + B·C·1 + A·C

F = A·B + B·C·(A+A) + A·C

F = A·B + A·B·C + A·B·C + A·C

F = A·B·(1+C) + A·C·(B+1)

F = A·B·(1) + A·C·(1)

F = A·B + A·C

F = A + A·B

F = (A+A)·(A+B)

F = (1)·(A+B)

F = A+B

F = A · (A+B)

F = (A·A)+(A·B)

F = (0)+(A·B)

F = A·B

Factoring

OR law

AND law

Distributive

AND law

OR law

AND law

OR law

Distributive

OR law

Factoring

AND law

= A+B

= A·B

= A·B + A·C

The last two examples on the left (with the blue boxes) shows relationships that are sometimes called
the “absorptive” laws, and the example on the right (with the green box) is often called the
“consensus” law. The so-called absorptive laws are easily demonstrated with other laws, so it is not
necessary or even convenient to use these relationships as laws – particularly because different
forms of equations can make it difficult to identify when the law might apply. The consensus law is
also easily derived, if the “trick” of AND’ing a ‘1’ into the equation, and then expanding that AND into
an OR relationship is used (this trick is perfectly acceptable, if not entirely obvious).

Module #4: Logic Minimization Page 7 of 16

Logic Graphs

Truth tables are not very useful for minimizing logic systems, and Boolean algebra has limited utility.
Logic graphs offer the easiest and most useful pen-and-paper method of minimizing a logic system. A
logic graph and truth table contain identical information, but patterns that indicate redundant inputs
can be readily identified in a logic graph. A logic graph is a two (or even three) dimensional construct
that contains exactly the same information that a truth table does, but arranged in an array structure
so that all logic domains are contiguous, and logic relationships are therefore easy to identify.
Information in a truth table can easily be recast into a logic graph. The figure below shows how a
three-input truth table is mapped to an 8-cell logic graph; the numbers in the logic graph cells are the
numbers in the truth table rows.

A 1-to-1 correspondence exists between
the cells in the logic graph and the rows in
a truth table, and that the cell numbers
have been arranged so that each logic
variable domain is represented by a group
of four connected cells (the A domain is a
row of four cells, and the B and C domains
are squares of four cells). This particular
arrangement of cells in the logic graph
isn’t the only one possible, but it has the
useful property of having each domain
overlap the others in exactly two cells. As can be seen in the
figure, the logic domains are contiguous in the logic graph, but
they are not contiguous in the truth table. It is the contiguous
logic domains in the logic graphs that make them so useful.

Logic graphs are typically shown with variable names near the
graph borders, and 1’s and 0’s near cell rows and columns to
indicate the value of the variables for the rows and columns.
The logic graph below shows a typical appearance. Note that
the variable values on the logic graph edges can be read from
left to right to find the truth table row that corresponds to a
given cell. For example, the A = 1, B = 0, C= 1 row in the truth
table below is shaded, and that row corresponds to the shaded
cell in the logic graph.

The information in the output column of the
truth table below has been transferred row-for-
cell into the cells of the logic graph, and so the
truth table and logic graph contain identical
information. In the logic graph, 1’s that appear
adjacent to one another (either vertically or
horizontally) are said to be “logically adjacent”,
and these adjacencies represent opportunities
to find and eliminate redundant inputs. Logic
graphs used in this manner are called
Karnaugh Maps (or just K-Maps) after their
inventor.

The figure below shows a four-input truth table mapped to a 16-cell K-map.

1 1 1

0

0
1

1
0

1
0
1

Y

1 1 0
1 0 1

1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

A B C

1 1 1

0

0
1

1
0

1
0
1

Y

1 1 0
1 0 1

1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

A B C

1 1 1

0

0
1

1
0

1
0
1

Y

1 1 0
1 0 1

1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

A B C

A domain B domain C domain

Module #4: Logic Minimization Page 8 of 16

The key to using K-maps to find and eliminate redundant inputs from a logic system is to identify
“groups” of 1’s for SOP equations or groups of 0’s for POS equations. A valid group must be a “power
of 2” size (meaning that only groups of 1, 2, 4, 8, or 16 are allowed), and it must be a square or
rectangle, but not a diagonal, dogleg, or other irregular shape. Each ‘1’ in a SOP K-map must
participate in at least one group, and each ‘1’ must be in the largest possible group (and likewise for
0’s in POS maps). The requirement that all 1’s (or 0’s) are grouped in the largest possible group may
mean that some 1’s (or 0’s) are part of several groups. In practice, loops are drawn on a K-map to
encircle the 1’s (or 0’s) in a given group. Once all 1’s (or 0’s) in a map have been grouped in the
largest possible loops, the grouping process is complete and a logic equation can be read directly
from the K-map. If the procedure is performed correctly, a minimal logic equation is guaranteed.

SOP logic equations are read from a K-map by writing product terms defined by each loop, and then
OR’ing the product terms together. Likewise, POS logic equations are read from a K-map by writing
sum terms defined by each loop, and then AND’ing all the sum terms together. A loop term is defined
by the logic variables on the periphery of the K-map. SOP loop terms use minterm codes (i.e., the ‘0’
domain of a variable results in that variable being complemented in the product term for the loop), and
POS loop terms use maxterm codes (i.e., the ‘1’ domain of an input variable results in that variable
being complemented in the sum term for the loop). If a loop spans across both the ‘1’ and ‘0’ domain
of a given logic variable, then that variable is redundant and it does not appear in the loop term.
Restated, a logic variable is included in a loop term only if the loop is contained entirely in the ‘1’ or ‘0’
domain of that variable. The edges of maps are continuous with the opposite edges, so loops can
span from one edge to the other without grouping 1’s or 0’s in the middle (the examples below
illustrate this process).

K-maps can be used for finding minimal logic expressions for systems of 2, 3, 4, 5, or 6 input
variables (beyond 6 variables and the technique becomes unwieldy). For systems of 2, 3, or 4
variables, the technique is straightforward, and it is illustrated in several examples below. In general,
the looping process should be started with 1’s (or 0’s) that can only be grouped in one possible loop.
As loops are drawn, ensure that all 1’s (or 0’s) are in at least one loop, and that no redundant loops
exist (a redundant loop contains 1’s or 0’s that are all already grouped in other loops).

Module #4: Logic Minimization Page 9 of 16

10 10

01 10

B C
 0 0 0 1 1 1 1 0 A

10 01

10 00

B C
 0 0 0 1 1 1 1 0

0

 1

 A

10 11

10 11

B C
 0 0 0 1 1 1 1 0 A

00 11

11 11

B C
 0 0 0 1 1 1 1 0 A

F = C · (A+B) F = (A+B+C)·(A+C)·(B+C) F = (B+C) F = (A+B)

0

 1

0

 1

0

 1

SOP LOOPS POS LOOPS

10 10

01 10

B C
 0 0 0 1 1 1 1 0 A

10 01

10 00

B C
 0 0 0 1 1 1 1 0

0

 1

 A

10 11

10 11

B C
 0 0 0 1 1 1 1 0 A

00 11

11 11

B C
 0 0 0 1 1 1 1 0 A

F = A·C + B·C F = A·C + A·B·C + B·C F = B + C F = A + B

0

 1

0

 1

0

 1

10 01

10 00

10 00

11 11

 C D
 0 0 0 1 1 1 1 0

 0 0

 0 1

 1 1

 1 0

 A B

10 00

10 11

11 01

10 01

 C D
 0 0 0 1 1 1 1 0

 0 0

 0 1

 1 1

 1 0

 A B

10 00

11 10

11 10

11 10

 C D
 0 0 0 1 1 1 1 0

 0 0

 0 1

 1 1

 1 0

 A B

01 10

10 01

11 11

11 11

 C D
 0 0 0 1 1 1 1 0

 0 0

 0 1

 1 1

 1 0

 A B

F = B·D + A·D + C·D F = B·D + B·D + AF = B·D + A·B + C·D F = C·D + A·B·C + A·B·C+ A·D

10 01

10 00

10 00

11 11

 C D
 0 0 0 1 1 1 1 0

 0 0

 0 1

 1 1

 1 0

 A B

10 00

10 11

11 01

10 01

 C D
 0 0 0 1 1 1 1 0

 0 0

 0 1

 1 1

 1 0

 A B

10 00

11 10

11 10

11 10

 C D
 0 0 0 1 1 1 1 0

 0 0

 0 1

 1 1

 1 0

 A B

01 10

10 01

11 11

11 11

 C D
 0 0 0 1 1 1 1 0

 0 0

 0 1

 1 1

 1 0

 A B

F = (A+B+D)·(C+D) F = (A+D)·(B+D)·(B+C) F = (A+B+D)·(A+B+D) F = (A+C+D)·(A+B+C)·

 (A+C+D)·(B+D)

Minterm SOP equations and maxterm POS equations can be readily transferred into K-maps by
simply placing 1’s (for SOP equations) and 0’s (POS) in the cells listed in the equation. For SOP
equations, any cell not listed as receiving a ‘1’ gets a ‘0’, and vice-versa for POS equations. The
figures below illustrate the process.

For systems of 5 or 6 variables, two different methods can be used. One method uses 4-variable K-
maps nested in 1 or 2 variable “super maps”, and the other method uses “map entered variables”. The
super-map technique for finding minimum equations for 5 or 6 variables closely follows the technique

Module #4: Logic Minimization Page 10 of 16

A B C F G

0 0 0 0 1

0 0 1 1 φ

0 1 0 φ 1

0 1 1 0 φ

1 0 0 1 1

1 0 1 0 0

1 1 0 0 0

1 1 1 φ 0

 B C

 A
00 01 11 10

 0 0 1 1 φ

 1 0 1 φ 0

 F

 B C

 A
00 01 11 10

 0 1 φ φ 1

 1 1 0 0 0

 G

used for 2, 3, or 4 variables, but 4-variable maps must be nested into 1 or 2-variable super-maps as
shown below. Logic adjacencies between the sub-maps can be discovered by identifying 1’s (or 0’s)
in like-numbered cells in adjacent super-map cells. The patterns in the maps show examples of
adjacent cells in the K-maps. SOP equations for the maps are shown – note that the “super map”
variables do not appear in product terms when 1’s are located in like-numbered cells in the sub maps.

Incompletely specified logic functions (don’t cares)

Situations can arise where a circuit has N input signals, but not all 2N combinations of inputs are
possible. Or, if all 2N combinations of inputs are possible, some combinations might be irrelevant. For
example, consider a television remote control unit that can switch between control of a television,
VCR, or DVD. Some remotes might have operational modes where buttons like “fast forward” are
physically switched out of the circuit; other remotes may use modes where such buttons are left in the
circuit, but their functions are irrelevant. In either case, some combinations of input signals are
completely inconsequential to the
proper operation of the circuit. It is
possible to take advantage of these
situations to further minimize logic
circuits.

Input combinations that cannot possibly
effect the proper operation of a logic
system can be allowed to drive circuit
outputs high or low – literally, the
designer doesn’t care what the circuit
response is to these impossible or
irrelevant inputs. This information is
encoded by using a special “don’t care”
symbol in truth tables and K-maps to

Module #4: Logic Minimization Page 11 of 16

indicate that the signal can be a ‘1’ or a ‘0’ without effecting circuit operation. Some sources use an
“X” to indicate a don’t care, but this can be confused with a signal named “X”. It is perhaps a better

practice to use a symbol that is not normally associated with signal names – here, we choose the “φ”
symbol.

The truth table on the right shows two output functions (F and G) for the same three inputs. Both
outputs have two rows where the output is a don’t care. This same information is also shown in the
associated K-maps. In the “F” K-map, the designers “don’t care” if the output is a ‘1’ or a ‘0’ for
minterms 2 and 7, and so cells 2 and 7 in the K-map can be looped as either a ‘1’ or a ‘0’. Clearly,
looping cell 7 as a ‘1’ and cell 2 as a ‘0’ results in a more minimal logic circuit. In this case, both an
SOP and POS looping would result in identical circuits.

In the “G” K-map, the don’t cares in cells 1 and 3 can be looped as either a ‘1’ or a ‘0’. In an SOP
looping, both don’t cares would be looped as 1’s, giving a logic function of “G = A’ + B’·C’”. In a POS
looping, however, cells 1 and 3 would be looped as 0’s, giving the logic function “G = C’·(A’ + B’). A
little Boolean algebra reveals these two equations are not algebraically equal. Often, the SOP and
POS forms of equations looped from K-maps that contain don’t cares are not algebraically equal
(although they would perform identically in the circuit). The following examples illustrate the use of
don’t cares in K-maps.

Entered Variables

Truth tables provide the best mechanism for completely specifying the behavior of a given
combinational logic circuit, and K-maps provide the best mechanism for visualizing and minimizing the
input-output relationships of digital logic circuits. So far, we have shown input variables across the top
left of a truth table and around the periphery of K-maps. This allows every state of an output signal to

Module #4: Logic Minimization Page 12 of 16

be defined as a function of the input patterns of 0’s and 1’s on a given row in a truth table, or as the
binary coding for a given K-map cell. Without any loss of information, truth tables and K-maps can be
translated into a more compact form by moving input variables from the top-left of a truth table to the
output column, or from outside the K-map to inside the cells of a K-map. Although it will not be clear
until later modules, the use of entered variables and compressed truth tables and K-maps often
makes a multi-variable system much easier to visualize and minimize.

The translation mechanics are illustrated in the figures below, where a 16-row truth table is
compressed into both 8-row and 4-row truth tables. In the 8-row truth table, the variable D is no longer
used to identify an input column. Instead, it appears in the output column, where it encodes the
relationship between two rows of output logic values and the D input. In the 4-row truth table,
variables C and D are no longer used to identify an input column, but rather in the output column
where they encode the relationship between four rows of the output logic values and the C and D
inputs.

The 4-cell K-map is reproduced to the right, this time showing the
implied sub-maps that illustrate the relationship between C and D for
each of the four unique values of the A and B variables. For any
entered variable K-map, thinking of (or actually sketching) the sub-
maps can help identify the correct encoding for the entered
variables. Note that truth table row numbers can be mapped to cells
in the sub-maps by reading the K-map index codes, starting with the
super-map code, and appending the sub-map code. For example,
the shaded box in the sub-map is in box number 1110.

This same map compression is illustrated below, showing the
mapping from non-compressed K-maps directly to compressed K-
maps. The colors show how cells in the uncompressed map are
translated to the cells in the compressed map. Note that two cells in the 16-cell map are compressed
into a single cell in the 8-cell map, and that four cells in the 16-cell map are compressed into a single
cell in the 4-cell map.

10

11

C 0 1

0

 1

D

= C+D

01

00

C 0 1

0

 1

D

= C+D

11

01

C 0 1

0

 1

D

= C·D

10

01

C 0 1

0

 1

D

= C D

A
B 0 1

0

1

Module #4: Logic Minimization Page 13 of 16

Minterm SOP equations and maxterm POS equations can also be translated directly into entered
variable K-maps as shown in the illustration below (the smaller numbers at the bottom of K-map cells
show the minterm or maxterm numbers assigned to that cell). The minimum number of input variables
is assumed when encoding minterms or maxterms into the K-maps. For example, if the largest
minterm present is 14, four input variables are assumed.

Looping entered variable K-maps follows the same general principles as looping “1-0” maps – optimal
groupings of 1’s and entered variables (EVs) are sought for SOP circuits, and optimal groupings of 0’s
and EVs are sought for POS circuits. The rules are similar: all EVs and all 1’s (or 0’s) must be
grouped in the largest possible “power of 2” sized rectangular or square grouping, and the process is
complete when all EV’s and all 1’s (or 0’s) are included in an optimal loop. The differences are that
similar EVs can be included in loops by themselves or with 1’s (or 0’s), and care must be taken when
looping cells with 1’s (or 0’s), because a ‘1’ (or ‘0’) indicates that all possible combinations of EV’s are
present in that map cell, and loops that include 1’s (or 0’s) together with EV’s often include only a
subset of the possible combinations of the EV’s (this is illustrated in the figures below). Looping an EV
K-map is complete when all minterms or maxterms are contained in an adequate group. Perhaps the
most challenging aspect is to ensure that all possible combinations of EV’s have been accounted for
in cells that contain 1’s (or 0’s).

To help understand looping in EV K-maps, it may be helpful to think of the sub-maps implied by every
K-map cell. As shown in the figures below, the variables in K-map cells can arise from looping the “1-
0” information entered into cells in the implied sub-maps. A looping of information in adjacent cells in
the EV K-map can include 1’s (or 0’s) in the sub-maps that appear in the same positions in the sub-
maps.

When reading the loop equations, the SOP product terms (or POS sum terms) for each loop must
include the variables that define the loop domain and the EVs contained within the loop. For example,

Module #4: Logic Minimization Page 14 of 16

in the first example below, the first SOP term A’·B’·D includes the loop domain A’·B’ and the entered
variable D.

Cells in entered variable maps might contain a single entered variable or a logic expression of two or
more variables. When looping cells that contain logic expressions, it helps to recognize the
differences in SOP and POS looping mechanics. As compared to a single EV in a K-map cell, a
product term in a cell represents a smaller SOP domain, because the more AND’ed variables in a
product term, the smaller the defined logic domain. A sum term in a cell represents a larger SOP
domain, because the more OR’ed variables in a sum term, the larger the defined logic domain. When
looping SOP equations from an EV map, cells containing product terms have fewer 1’s in their sub-
maps than cells that contain single EV’s, and cells with sum terms contain more 1’s. Similarly, when
looping POS equations from an EV map, cells containing sum terms have fewer 0’s in their sub-maps
than cells that contain single EV’s, and cells with product terms contain more 0’s.

Don’t cares in entered variable K-maps serve the same purpose as they did in “1-0” maps; they
indicate input conditions that cannot occur or that are irrelevant, and they can be included in
groupings of 1’s, 0’s, or entered variables as needed to minimize logic. As shown in the examples
below, a given don’t care can be taken as a ‘1’, ‘0’, or entered variable as needed for any particular
loop.

Module #4: Logic Minimization Page 15 of 16

Computer-Based Logic Minimization Algorithms

Several logic minimization algorithms have been developed over the years, and many of them have
been incorporated into computer-based logic minimization programs. Some of these programs, such
as those based on the Quine-McCluskey algorithm, find a true minimum by exhaustively checking all
possibilities. Programs based on these exhaustive search algorithms can require long execution
times, especially when dealing with large numbers of inputs and outputs. Other programs, such as the
popular Espresso program developed at UC Berkeley, use heuristic (or rule-based) methods instead
of exhaustive searches. Although these programs run much faster (especially on moderate to large
systems), they terminate upon finding a "very good" solution that may not always be minimal. In many
real-world engineering situations, finding a greatly minimized solution quickly is often the best
approach.

Espresso is by far the most widely used minimization algorithm, followed by Quine-McCluskey. These
two algorithms will be briefly introduced, but not explained. Many good references exist in various
texts and on the web that explain exactly how the algorithms function – you are encouraged to seek
out and read these references to further your understanding of logic minimization techniques.

The Quine-McCluskey logic minimization algorithm was developed in the mid-1950's, and it was the
first computer-based algorithm that could find truly minimal logic expressions. The algorithm finds all
possible groupings of 1’s through an exhaustive search, and then from that complete collection finds a
minimal set that covers all minterms in the on-set (the on-set is the set of all minterms for which the
function output is asserted). Because this method searches for all possible solutions, and then selects
the best, it can take a fair amount of computing time, In fact, even on modern computers, this
algorithm can execute for minutes to hours on moderately sized logic systems. Many free-ware
programs exist that use the Q-M algorithm to minimize a single equation or multiple equations
simultaneously.

Espresso was first developed in the 1960’s, and it has become the most commonly used logic
minimization program used in industry. Espresso is strictly “rule-based”, meaning that it does not
search for a guaranteed minimum solution (although in many cases, the true minimum is found). An
espresso input file must be created before espresso can be run. The input file is essentially a truth
table that lists all the minterms in the non-minimized function. Espresso returns an output file that

Module #4: Logic Minimization Page 16 of 16

shows all the terms required in the output expression. Espresso can minimize a single logic function
of several variables, or many logic functions of several variables. Espresso makes several simplifying
assumptions about a logic system, and it therefore runs very quickly, even for large systems.

Digimin is a windows wrapper that allows both Boozer and Espresso to be run in a Windows
environment. Digimin also provides an easy to use truth-table entry mechanism and provides output in
the form of SOP and POS equations. Digimin, available from the class website, is easy and intuitive to
use – simply run it, add functions (by selecting Action -> add function), and then add variables to the
functions (by selecting Action -> add variables). When all functions and variables have been added,
simply choose the MIN function and the Espresso or Boozer algorithm.

Since the1990’s, Hardware Definition Languages (HDLs) and their associated design tools and
methods have been replacing all other forms of digital circuit design. Today, the use of HDLs in
virtually all aspects of digital circuit design is considered standard practice. We will introduce the use
HDLs in a later module, and as we will see, any circuit defined in an HDL environment is automatically
minimized before it is implemented. This feature allows a designer to focus strictly on a circuit’s
behavior, without getting slowed down in the details of finding efficient circuits. Although it is important
to understand the structure and function of digital circuits, experience has shown that engineers can
be far more productive by specifying only a circuit’s behavior, and relying on computer-based tools to
find efficient circuit structures that can implement those behaviors.

