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Overview 
 
This lab introduces several combinational circuits that are frequently used by digital designers, 
including a data selector (also called a multiplexor or just "mux"), a binary decoder, a seven-segment 
decoder, an encoder, and a shifter. Each of these circuits can be used by themselves in the solution 
of some simpler logic problems, but they are more often used as building blocks in the creation of 
larger, more complex circuits. In this module, these circuits will be developed from first principles 
following a general design procedure that will serve as a model for all later designs. In later modules, 
these circuits will be used as modular (or “macro”) building blocks in larger designs. 
 
This general design procedure has five main steps. First, you must gain a clear understanding of the 
design intent of each circuit before any design activities start. When you are doing original design 
work, this understanding comes from many sources, including other persons, previous or competing 
designs, research papers, or your own insightful thinking. For now, the discussion that leads the 
presentation of each new circuit is intended to impart that clear understanding to you. Second, a block 
diagram that shows all circuit inputs and outputs will be developed. A block diagram is an 
indispensable part of any design, especially when dealing with complex circuits. In conceiving and 
capturing a block diagram, you are committing to a set of input and output signals, and those signals 
define the context and boundaries of your design.  Third, the design requirements will be captured in 
an engineering formalism like a truth table or logic equations. This formalism removes all ambiguity 
from the design, and establishes a solid specification for the circuit. Fourth, the formally stated 
requirements will be used to find minimal circuits that meet the specifications. And finally, those 
minimal circuits will be created and implemented using the ISE/WebPack tool and a Digilent board, 
and verified in hardware to ensure they meet their behavioral requirements. 
 
 
Before beginning this lab, you should… After completing this lab, you should… 
 

• Be able to specify, design, and minimize 
combinational logic systems 

• Be able to create schematic-based or 
VHDL-based designs in the Xilinx 
WebPack environment 

• Be able to download designs created in 
WebPack to the Digilent circuit board. 

 

 

• Understand the application, function, and 
structure of decoder, multiplexor, encoder, 
and shifter circuits; 

• Know how to use these circuits in the 
solution of larger problems; 

• Be able to quickly implement these circuits 
in the Xilinx CAD tool environment. 

 

This lab exercise requires… 
 

• A windows computer running Xilinx WebPack  

• A Digilent board 
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Combinational Circuit Blocks 
 
Data Selectors (Multiplexors) 
 
Data selectors, more commonly called multiplexors (or just muxes), function by 
connecting one of their input signals to their output signal as directed by their 
“select” or control input signals. Muxes have N data inputs and log2N select 
inputs, and a single output. In operation, the select inputs determine which data 
input drives the output, and whatever voltage appears on the selected input is 
driven on the output. All non-selected data inputs are ignored. As an example, if 
the select inputs of a 4:1 mux are ‘1’ and ‘0’, then the output Y will be driven to 
the same voltage present on input I2. 
 
Common mux sizes are 2:1 (1 select input), 4:1 (2 select inputs), and 8:1 (3 
select inputs). The truth table shown specifies the behavior of a 4:1 mux. Note 
the use of entered variables in the truth table – if entered variables were not 
used, the truth table would require six columns and 26 or 64 rows. In general, 
when entered-variable truth tables are used to define a circuit, “control” inputs are 
shown as column-heading variables, and data inputs are used an entered 
variables.  
 
The truth table can easily be modified for muxes that handle different numbers of 
inputs, by adding or removing control input columns. A minimal mux circuit can 
be designed by transferring the information in the truth table to a K-map, or by 
simply inspecting the truth table and writing an SOP equation directly. A minimal 
equation for the 4:1 mux follows (you are encouraged to verify this is a minimal 
equation):  
 

 
 
An N-input mux is a simple SOP circuit constructed from N AND gates each with log2N+1 inputs, and 
a single output OR gate. The AND gates combine the log2N select inputs with a data input such that 
only one AND gate output is asserted at any time, and the OR output stage simply combines the 
outputs of the AND gates (you will complete the sketch for a mux circuit in the exercises). As an 
example, to select input I2 in a 4 input mux, the two select lines are set to S1 = 1 and S0 = 0, and the 
input AND stage would use a three input AND gate combining S1, not (S0), and I2.  
 
Often, mux circuits use an enable input in addition to the other inputs. The enable input functions as a 
sort of global on/off switch, driving the output to logic ‘0’ when it is de-asserted, and allowing normal 
mux operation when it is asserted. 
 
Larger muxes can easily be constructed from smaller muxes. For example, an 8:1 mux can be 
created from two 4:1 muxes and one 2:1 mux if the outputs from the 4:1 muxes drive the data inputs 
of the 2:1 mux, and the most-significant select input drives the select input of the 2:1 mux. 
 
Muxes are most often used in digital circuits to transfer data elements from a memory array to data 
processing circuit in a computer system. The memory address is presented on the mux select lines, 
and the contents of the addressed memory location are presented on the mux data inputs (this 
application of muxes will be presented in later labs that deal with memory systems). Since most data 
elements in computer systems are bytes or words consisting of 8, 16, or 32 bits, muxes used in 
computer circuits must switch 8, 16, 32 or more signals all at once. Muxes that can switch many 

S1 S0 Y 

0 0 I0 

0 1 I1 

1 0 I2 

1 1 I3 

 
4:1 mux truth 

table 

 
 

Mux circuit 
symbol 
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signals simultaneously are called “bus muxes”. A block diagram and schematic for a bus mux that can 
select one of four 8-bit data elements is shown below. 
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Since this most common application of multiplexors is beyond our current presentation, we will 
consider a less common, somewhat contrived application. Consider the K-map representation of a 
given logic function, where each K-map cell contains a '0', '1', or an entered variable expression. Each 
unique combination of K-map index variables selects a particular K-map cell (e.g., cell 6 of an 8 cell K-
map is selected when A=1, B=1, C=0). Now consider a mux, where each unique combination of select 
inputs selects a particular data input to be passed to the output (e.g., I6 of an 8 input mux can be 
selected by setting the select inputs to A=1, B=1, C=0). It follows that if the input signals in a given 
logic function are connected to the select inputs of a mux, and those same input signals are used as 
K-map index variables, then each cell in the K-map corresponds to a particular mux data input. This 
suggests a mux can be used to implement a logic function by “connecting” the K-map cell contents to 
the data lines of the mux, and connecting the K-map index variables to the select lines of the mux. 
Mux data inputs are connected to: '0' (or ground) when the corresponding K-map cell contains a '0';  
'1' (or Vdd) when the corresponding K-map cell contains a '1'; and if a K-map cell contains an entered 
variable expression, then a circuit implementing that expression is connected to the corresponding 
mux data input. Note that when a mux is used to implement a logic circuit directly from a truth table or 
K-map, logic minimization is not performed. This saves design time, but usually creates a less efficient 
circuit (however, a logic synthesizer would remove the inefficiencies before such a circuit was 
implemented in a programmable device). 
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A mux can easily be described in behavioral VHDL using a selected signal assignment statement as 
shown below. The statement functions by comparing the value of the sel input to the value shown in 
the when clause: the output variable Y gets assigned I0, I1, I2, or I3 depending on whether sel = “00”, 
“01”, “10”, or “11” (in a selected signal assignment statement, the “when others” clause is used for the 
final case for reasons that will be explained later). In addition to assigning values to individual signals 
or busses, the selected signal assignment statement can also be used to assign the result of 
arithmetic and/or logic operations to an output. 
 
The example code on the left below is for a mux that switches logic signals, and the code on the right 
is for an 8-bit bus mux. Note the only difference in the code is in the port statement, where the data 
elements for the bus mux are declared to be vectors instead of signals. Note also that the assignment 
statement in the bus mux example assigns vector quantities just like signals. When you examine the 
code examples, particularly the bus mux, look again at the previous figure and consider the amount of 
effort required to create a bus mux schematic vs. the bus mux VHDL code. 
 

 
 
 
VHDL source code for implementing a more 
complex mux’ing circuit, such as one that 
might select any one of four logic function 
outputs to pass through to the output, is 
shown on the right. This example code uses 
a “conditional assignment” statement. 
Conditional assignment statements and 
selected signal assignments both allow 
more complex logic requirements to be 
succinctly described, and they can generally 
be used interchangeably. In most cases, a 
synthesizer will produce the same circuit 
regardless of whether a selected or 
conditional assignment statement is used. 
There are subtle differences between the 
statements, and these differences will be discussed later. For now, it is a matter of personal taste as 
to which one is used. 
 
A conditional assignment statement uses the “when-else” language feature to describe compound 
logic statements. By following the example code shown, conditional assignments can be written to 
describe a wide variety of assignments.  
 

 
 
VHDL code for a mux using a conditional assignment 



Module #6: Combinational Circuit Blocks Page 5 of 11 

 
 
Decoders 
 
Decoder circuits receive inputs in the form of an N-bit binary number and generate one or more 
outputs according to some requirement. Decoder inputs are typically viewed as a binary number 
representing some encoded quantity, and outputs typically drive some other circuit or device based on 
decoding that quantity. For example, a PS/2 keyboard decoder decodes the “scan codes” that are 
generated each time a given key is pressed (scan codes are unique binary numbers that are assigned 
to individual keys on a PS/2 keyboard). Most scan codes are simply sent to the host computer for 
parsing, but some perform specific functions. If the “caps lock” key is pressed, a signal is generated to 
illuminate an LED on the keyboard, and if “Cntrl-Alt-Del” is pressed, a signal is generated to interrupt 
PC operations. 
 
Here, we will examine two different types of decoders – a simple binary decoder, and a seven-
segment decoder that can drive a common numeric data display. 
 
A binary decoder has N inputs and 2N outputs. It receives N inputs (often grouped 
as a binary number on a bus) and then asserts one and only one of its 2N outputs 
based on that input. If the N inputs are taken as an N-bit binary number, then only 
the output that corresponds to the input binary number is asserted. For example, if 
a binary 5 (or "101") is input to a 3:8 decoder, then only the 5th output of the 
decoder will be asserted and all other outputs will be de-asserted. Practical 
decoder circuits are usually built as 2:4 decoders with 2 inputs and 22 (4) outputs, 
3:8 decoders with 3 inputs and 23 (8) outputs, or 4:16 decoders with 4 inputs 24 
(16) outputs. A decoder circuit requires one AND gate to drive each output, and 
each AND gate decodes a particular binary number. For example, a 3:8 decoder 
requires 8 AND gates, with the first AND gate having inputs A’· B’· C’, the second 
A’· B’· C, the third A’· B · C’, etc.  
 
If a binary decoder larger than 4:16 is needed, it can be built from smaller decoders. Only decoders 
with an enable input can be used to construct larger decoder circuits. As with the mux, the enable 
input drives all outputs to ‘0’ when de-asserted, and allows normal decoder operation when asserted. 
 
Decoders are most often used in more complex digital systems to access a particular memory 
location based on an “address” produced by a computing device. In this application, the address 
represents the coded data inputs, and the outputs are the particular memory element select signals. A 
typical memory circuit contains a decoder to select which memory element to write, the memory 
elements themselves, and a mux to select which element to read.  
 
As with multiplexors, this most common application of decoders is beyond our current presentation, so 
instead we will consider a less common, somewhat contrived application. Consider the function of a 
decoder and the truth table, K-map, or minterm representation of a given function. Each row in a truth 
table, each cell in a K-map, or each minterm number in an equation represents a particular 
combination of inputs. Each output of a decoder is uniquely asserted for a particular combination of 
inputs. Thus, if the inputs to a given logic function are connected to the inputs of a decoder, and those 
same inputs are used as K-map input logic variables, then a direct one-to-one mapping is created 
between the K-map cells and the decoder outputs. It follows that any given function represented in a 
truth table or K-map can be directly implemented using a decoder, by simply by OR'ing the decoder 
outputs that correspond to a truth table row or K-map cell containing a “1” (decoder outputs that 
correspond to K-map cells that contain a zero are simply left unconnected). In such a circuit, any input 
combination with a ‘1’ in the corresponding truth table row or K-map cell will drive the output OR gate 
to a ‘1’, and any input combination with a ‘0’ in the corresponding K-map cell will allow the OR gate to 

 
3:8 binary 
decoder 
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output a ‘0’. Note that when a decoder is used to implement a circuit directly from a truth table or K-
map, no logic minimization is performed. Using a decoder in this fashion saves time, but usually 
results in a less efficient implementation (here again, a logic synthesizer would remove the 
inefficiencies before such a circuit was implemented in a programmable device). 
 
A decoder can easily be described in 
behavioral VHDL using a selected signal 
assignment statement as shown below. In 
the example, both the inputs and outputs are 
grouped as busses so that a selected 
assignment statement can be used. In this 
example, the inputs can be individually 
referred to as I(1) and I(0), and the outputs 
as Y(0) through Y(3). The code can easily 
be modified to describe a decoder of any 
size. 
 
 
 
De-multilpexor 
 
Our use of the word “multiplexor” has its origins in telecommunications, defining a system where one 
signal is used to transmit many different messages, either simultaneously or at different times. “Time-
multiplexing” describes a system where different messages use the same physical signal, with 
different messages being sent at different times. Time multiplexing works if a given signal can carry 
more traffic than any one message needs. For example, if ten messages each require that 1Kbit of 
information be sent every second, and if a communication signal is available that can carry 10Kbits 
per second, then time-multiplexing can be used to provide ten 1Kbit time windows each second, one 
for each signal. A multiplexor can be used as a simple time multiplexor, if the select inputs are used 
to define the time window, and the data inputs are used as the data sources. 
 
A decoder with an enable can be used 
as a de-multiplexor. Whereas a 
multiplexor selects one on N inputs to 
pass through to the output, a de-
multiplexor takes a single input and 
routes it to one of N outputs. A 
multiplexor/de-multiplexor (or more 
simply, mux/de-mux) circuit can be 
used to transmit the state of N signals 
from one place to another using only 
Log2N+1 signals. Log2N signals are 
used to select the data input for the mux and to drive the decoder inputs, and the rate at which these 
signals change define the time-window length. The data-out of the mux drives the enable-in of the 
decoder, so that the same logic levels that appear on the mux inputs also appear on the 
corresponding decoder outputs, but only for the mux input/decoder output currently selected. In this 
way, the state of N signals can be sent from one place to another using only Log2N+1 signals, but 
only one signal at a time is valid.  
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VHDL code for a 2:4 decoder 
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Seven-Segment Displays and Decoders 
 
Seven-segment displays (7sd) are some of the most common electronic display devices in use. They 
can be used to display any decimal digit by illuminating particular segments and leaving other 
segments dark. 7sd devices are constructed from seven LEDs that have been arranged in a figure "8" 
pattern as shown in the figure below. These LEDs function identically to the individual LEDs – they 
emit light when a small current passes through them. The 7sd device can display a particular digit if 
certain LED segments are illuminated while others remain dark. As examples, if only segments b and 
c are illuminated, then the display will show a '1', and if segments a, b and c are illuminated then the 
display will show a '7'. To cause an illuminating current to flow through any given LED segment, a 
logic signal must be impressed across the 
segment LED. In a typical 7sd circuit, a current-
limiting resistor is placed on the cathode lead, 
and a transistor is used on the anode lead to 
provide additional current (most signal pins on 
digital ICs – like the FPGA on the Digilent board 
– cannot provide enough current to light all the 
display segments, so a transistor is used to 
provide more current). 
 
In order that all 10 decimal digits can be 
displayed, a 7sd device requires seven logic 
signals, one for each segment. By asserting 
particular combinations of these signals, all ten 
decimal digits can be displayed. 
 
The Digilent board uses a common anode display, which means that all the anode connections for a 
given digit are tied together into a common circuit node as shown below. To illuminate a given 
segment in a given digit, a ‘1’ must be applied 
to the digit’s anode, and ‘0’ must be applied to 
the segment’s cathodes (NOTE: With Digilent 
boards, a ‘1’ is applied to a digit’s anode by 
applying a ‘0’ to the circuit node that drives the 
transistor; thus, the anode signals AN3 – AN0 
are “active low”).  
 
A seven-segment decoder (SSD) receives four 
signals that represent the four bits of a binary 
number, and produces seven output signals 
that can drive the seven segments in the 
seven-segment display. Thus, for example, if 
“0000” is input to the SSD, all outputs except 
“g” should be asserted (to cause a ‘0’ to be 
displayed on the 7sd). And if “1000” is input to the SSD, then all outputs 
should be asserted (to cause an ‘8’ to be displayed). Typically, the input 
signals are named B3-B0, and the output signals are given a letter to 
indicate which segment they must drive (A-F). As discussed above, each of 
the seven outputs could be thought of as a separate 4-input logic design 
problem, and optimal circuits for each output could easily be found using 
the techniques developed in previous labs. In lab project that accompanies 
this module, various methods will be used to optimize (or minimize) the 
system as a whole, considering all seven outputs at the same time. 

 

A

B

C

D

E

F

G

B3

B2

B1

B0

B(3:0)

 

An un-illuminated seven-segment display, and nine 

illumination patterns corresponding to decimal digits

A

B

C

D

E

F
G



Module #6: Combinational Circuit Blocks Page 8 of 11 

 
 
A 7sd can easily be described in VHDL using a selected signal assignment statement. In fact, a 
selected assignment statement can be used to implement any truth table by listing the function inputs 
on the right of the” when” clause, and the associated outputs on the left. In the example shown below, 
the input and output variables are both vectors – the ins represents a 2-bit binary number, and the 
outs represent a 4-bit binary number. As discussed in the “muxes” section above, the output variable 
outs gets assigned the binary values shown in quotes when ins is equal to the value in the “when” 
clause. Thus, if ins is "01", then outs gets assigned "1010". 

 
 
VHDL code for a seven-segment decoder is partially supplied below. The four inputs (representing a 
binary number) have been grouped into a vector called BIN, and the seven segment outputs have 
been grouped into a vector called SEG_OUT. Note the "when others" clause in the last line as is 
typical for any selected assignment statement. This catch-all “when others” clause is used to assign 
the value "0000001" to the seven segment decoder outputs whenever an unspecified input condition 
occurs. In this case, this clause can be used to assign an output value when the binary numbers 1010 
through 1111 are present on the inputs. 
 

 
           Example VHDL code for a Seven-Segment Decoder 

 
 
Priority Encoders 
 
A priority encoder is, in a sense, the dual (or opposite) of the decoder circuit – it 
receives N inputs (where N is typically 4, 8 or 16), and asserts an output binary 
code of M=log2N bits (so the M-bit binary code is typically 2, 3, or 4 bits). The M-bit 
binary code indicates which input was asserted (i.e., in a 4:2 binary encoder, binary 
code 00 would be output if the 0th input line was asserted, binary code 01 would be 
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output of the 1st input line was asserted, etc.). Since more than one input line to the encoder might be 
asserted at any given time, the priority encoder asserts an output code corresponding to the highest 
numbered input that is asserted (i.e., if both input line 0 and input line 2 were asserted in a 4:2 
encoder, then binary code 10 would be output indicating that input line 2 is the highest line number – 
or highest priority input – currently asserted). 
 
At first thought, a four input encoder circuit should require just two outputs. In such a circuit, asserting 
the 3rd input signal would cause a “11” output, asserting the 2nd input signal would output a “10”, 
asserting the 1st input signal would output a “01”, and asserting the 0th input would output “00”. But 
what if no inputs are asserted? Again, a “00” would be appropriate. To avoid creating an ambiguous 
“00” output, encoders typically use an “Enable In” (EIN) signal and an “Enable Output” (EOUT) signal. 
EIN functions like other enable signals – when it is de-asserted, all outputs are driven to logic ‘0’, and 
when it is asserted, the encoder outputs can be driven by the inputs. EOUT is asserted only when EIN is 
asserted and no input signals are asserted. Thus, EOUT can be used to distinguish between no inputs 
asserted and the 0th input asserted. 
 
Larger encoders can be built from smaller encoder modules in much the same way that larger 
decoders can be built from smaller decoder modules. An encoder module that can be used as a 
building block for larger encoders must have one additional output called group-signal (GS). GS is 
asserted whenever EIN is asserted along with any other input signal, and it is used to form the most 
significant bit of the encoded output data element.  
 
Encoder circuits are typically used in digital systems when a binary number that corresponds to a 
given input must be generated. For example, individual “call attendant” signals arising from 
passengers seated on an airplane could be encoded into a seat number. Priority encoders are also 
used when certain input signals must be dealt with in a special manner. For example, if inputs from 
several sources can all arrive simultaneously, a priority encoder can indicate which signal should be 
dealt with first. Behavioral VHDL code for an encoder is shown below. 
 

 
Shifters 
 
A shifter is a circuit that produces an N-bit output based on an N-bit data input and an M-bit control 
input, where the N output bits are place-shifted copies of the input bits, shifted some number of bits to 
the left or right as determined by the control inputs. As an example, the function of an 8-bit shifter 
capable of shifting one, two, or three bits to the right or left is illustrated in the top row of the figure 

   
VHDL code for a priority encoder 
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below. The control signals enable several different functions: two bits (A1 and A0) to determine how 
many bit positions to shift (0, 1, 2, or 3); a Fill signal (F) determines whether bits vacated by shift 
operations receive a ‘1’ or a ‘0’; a Rotate signal (R = ‘1’ for rotate) determines whether shifted-out bits 
are discarded or recaptured in vacated bits; and a Direction signal (D = ‘1’ for right) determines which 
direction the shift will take. 
 

 
 
When bits are shifted left or right, some bits “fall off” one end of the shifter, and are simply discarded. 
New bits must then be shifted in from the opposite side. If no Fill input signal exists, then 0’s are 
shifted in (otherwise, the Fill input defines whether 1’s or 0’s are shifted in to vacated bits). Shifters 
that offer a Rotate function recapture shifted-out bits in vacated bits as shown in the lower row of the 
figure above. 
 
Based on the shifter functions Shift, Rotate, Direction, Fill, and 
Number of Bits, many different shifter circuits could be 
designed to operate on any number of inputs. As an example 
of a simple shifter design, the truth table on the right shows 
input/output requirements for a four-bit shifter that can shift or 
rotate an input value left or right by one bit (R=0 for shift, R=1 
for rotate, D=0 for left, D=1 for right). Note the truth table uses 
entered variables to compress the number of rows that would 
otherwise be required. A minimal circuit can be found from this 
truth table using pencil-and-paper methods or a computer-
based minimization program.  
 
Shifters are most often found in circuits that work with groups of signals that together represent binary 
numbers, where they are used to move data bits to new locations on a data bus (i.e., the data bit in 
position 2 could be moved to position 7 by right shifting five times), or to perform simple multiplication 
and division operations (exactly why a bit might want to be moved from one location to another on a 
data bus is left for a later module). A shifter circuit can multiply a number by 2, 4, or 8 simply by 
shifting the number right by 1, 2, or 3 bits (and similarly, a shifter can divide a number by 2, 4, or 8 by 
shifting the number left by 1, 2, or 3 bits). 
 

 
 
Truth table for 4-bit shifter with 
shift/rotate left/right functions 
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A behavioral VHDL design of a simple 8-bit shifter that can shift or rotate left or right by one bit is 
shown below. A conditional assignment statement is used in this example as the only statement in the 
architecture body. The “when-else” clause evaluates the state of enable (en), rotate (r), and direction 
(d) to distinguish between the possible output vector signal assignments. The first assignment in the 
conditional assignment statement assigns all zero’s to the dout bus when en=’0’. The remaining four 
assignments make use of the concatenation operator (&) to assign shifted or rotated versions of the 
input data bus to the output bus, depending on the states of r and d. 
 
 
 
 
 
 
 

 


