
MMoodduullee 66:: CCoommbbiinnaattiioonnaall CCiirrccuuiitt BBlloocckkss
Revision: February 3, 2008

Contains material © Digilent, Inc. 11 pages

Overview

This lab introduces several combinational circuits that are frequently used by digital designers,
including a data selector (also called a multiplexor or just "mux"), a binary decoder, a seven-segment
decoder, an encoder, and a shifter. Each of these circuits can be used by themselves in the solution
of some simpler logic problems, but they are more often used as building blocks in the creation of
larger, more complex circuits. In this module, these circuits will be developed from first principles
following a general design procedure that will serve as a model for all later designs. In later modules,
these circuits will be used as modular (or “macro”) building blocks in larger designs.

This general design procedure has five main steps. First, you must gain a clear understanding of the
design intent of each circuit before any design activities start. When you are doing original design
work, this understanding comes from many sources, including other persons, previous or competing
designs, research papers, or your own insightful thinking. For now, the discussion that leads the
presentation of each new circuit is intended to impart that clear understanding to you. Second, a block
diagram that shows all circuit inputs and outputs will be developed. A block diagram is an
indispensable part of any design, especially when dealing with complex circuits. In conceiving and
capturing a block diagram, you are committing to a set of input and output signals, and those signals
define the context and boundaries of your design. Third, the design requirements will be captured in
an engineering formalism like a truth table or logic equations. This formalism removes all ambiguity
from the design, and establishes a solid specification for the circuit. Fourth, the formally stated
requirements will be used to find minimal circuits that meet the specifications. And finally, those
minimal circuits will be created and implemented using the ISE/WebPack tool and a Digilent board,
and verified in hardware to ensure they meet their behavioral requirements.

Before beginning this lab, you should… After completing this lab, you should…

• Be able to specify, design, and minimize
combinational logic systems

• Be able to create schematic-based or
VHDL-based designs in the Xilinx
WebPack environment

• Be able to download designs created in
WebPack to the Digilent circuit board.

• Understand the application, function, and
structure of decoder, multiplexor, encoder,
and shifter circuits;

• Know how to use these circuits in the
solution of larger problems;

• Be able to quickly implement these circuits
in the Xilinx CAD tool environment.

This lab exercise requires…

• A windows computer running Xilinx WebPack

• A Digilent board

Module #6: Combinational Circuit Blocks Page 2 of 11

Combinational Circuit Blocks

Data Selectors (Multiplexors)

Data selectors, more commonly called multiplexors (or just muxes), function by
connecting one of their input signals to their output signal as directed by their
“select” or control input signals. Muxes have N data inputs and log2N select
inputs, and a single output. In operation, the select inputs determine which data
input drives the output, and whatever voltage appears on the selected input is
driven on the output. All non-selected data inputs are ignored. As an example, if
the select inputs of a 4:1 mux are ‘1’ and ‘0’, then the output Y will be driven to
the same voltage present on input I2.

Common mux sizes are 2:1 (1 select input), 4:1 (2 select inputs), and 8:1 (3
select inputs). The truth table shown specifies the behavior of a 4:1 mux. Note
the use of entered variables in the truth table – if entered variables were not
used, the truth table would require six columns and 26 or 64 rows. In general,
when entered-variable truth tables are used to define a circuit, “control” inputs are
shown as column-heading variables, and data inputs are used an entered
variables.

The truth table can easily be modified for muxes that handle different numbers of
inputs, by adding or removing control input columns. A minimal mux circuit can
be designed by transferring the information in the truth table to a K-map, or by
simply inspecting the truth table and writing an SOP equation directly. A minimal
equation for the 4:1 mux follows (you are encouraged to verify this is a minimal
equation):

An N-input mux is a simple SOP circuit constructed from N AND gates each with log2N+1 inputs, and
a single output OR gate. The AND gates combine the log2N select inputs with a data input such that
only one AND gate output is asserted at any time, and the OR output stage simply combines the
outputs of the AND gates (you will complete the sketch for a mux circuit in the exercises). As an
example, to select input I2 in a 4 input mux, the two select lines are set to S1 = 1 and S0 = 0, and the
input AND stage would use a three input AND gate combining S1, not (S0), and I2.

Often, mux circuits use an enable input in addition to the other inputs. The enable input functions as a
sort of global on/off switch, driving the output to logic ‘0’ when it is de-asserted, and allowing normal
mux operation when it is asserted.

Larger muxes can easily be constructed from smaller muxes. For example, an 8:1 mux can be
created from two 4:1 muxes and one 2:1 mux if the outputs from the 4:1 muxes drive the data inputs
of the 2:1 mux, and the most-significant select input drives the select input of the 2:1 mux.

Muxes are most often used in digital circuits to transfer data elements from a memory array to data
processing circuit in a computer system. The memory address is presented on the mux select lines,
and the contents of the addressed memory location are presented on the mux data inputs (this
application of muxes will be presented in later labs that deal with memory systems). Since most data
elements in computer systems are bytes or words consisting of 8, 16, or 32 bits, muxes used in
computer circuits must switch 8, 16, 32 or more signals all at once. Muxes that can switch many

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

4:1 mux truth

table

Mux circuit
symbol

Module #6: Combinational Circuit Blocks Page 3 of 11

signals simultaneously are called “bus muxes”. A block diagram and schematic for a bus mux that can
select one of four 8-bit data elements is shown below.

I0

S1
S0

A[7:0]
8

I1B[7:0]
8

I2C[7:0]
8

I3D[7:0]
8

Y[7:0]
8

I1
I0

I2
I3

S1
S0

I1
I0

I2
I3

S1
S0

A(0)
B(0)
C(0)
D(0)

A(1)
B(1)
C(1)
D(1)

I1
I0

I2
I3

S1
S0

A(7)
B(7)
C(7)
D(7)

Y

Y

Y

Y[7:0]A[7:0]

B[7:0]

C[7:0]

D[7:0]

S0

S1

S1

S0

Since this most common application of multiplexors is beyond our current presentation, we will
consider a less common, somewhat contrived application. Consider the K-map representation of a
given logic function, where each K-map cell contains a '0', '1', or an entered variable expression. Each
unique combination of K-map index variables selects a particular K-map cell (e.g., cell 6 of an 8 cell K-
map is selected when A=1, B=1, C=0). Now consider a mux, where each unique combination of select
inputs selects a particular data input to be passed to the output (e.g., I6 of an 8 input mux can be
selected by setting the select inputs to A=1, B=1, C=0). It follows that if the input signals in a given
logic function are connected to the select inputs of a mux, and those same input signals are used as
K-map index variables, then each cell in the K-map corresponds to a particular mux data input. This
suggests a mux can be used to implement a logic function by “connecting” the K-map cell contents to
the data lines of the mux, and connecting the K-map index variables to the select lines of the mux.
Mux data inputs are connected to: '0' (or ground) when the corresponding K-map cell contains a '0';
'1' (or Vdd) when the corresponding K-map cell contains a '1'; and if a K-map cell contains an entered
variable expression, then a circuit implementing that expression is connected to the corresponding
mux data input. Note that when a mux is used to implement a logic circuit directly from a truth table or
K-map, logic minimization is not performed. This saves design time, but usually creates a less efficient
circuit (however, a logic synthesizer would remove the inefficiencies before such a circuit was
implemented in a programmable device).

Module #6: Combinational Circuit Blocks Page 4 of 11

A mux can easily be described in behavioral VHDL using a selected signal assignment statement as
shown below. The statement functions by comparing the value of the sel input to the value shown in
the when clause: the output variable Y gets assigned I0, I1, I2, or I3 depending on whether sel = “00”,
“01”, “10”, or “11” (in a selected signal assignment statement, the “when others” clause is used for the
final case for reasons that will be explained later). In addition to assigning values to individual signals
or busses, the selected signal assignment statement can also be used to assign the result of
arithmetic and/or logic operations to an output.

The example code on the left below is for a mux that switches logic signals, and the code on the right
is for an 8-bit bus mux. Note the only difference in the code is in the port statement, where the data
elements for the bus mux are declared to be vectors instead of signals. Note also that the assignment
statement in the bus mux example assigns vector quantities just like signals. When you examine the
code examples, particularly the bus mux, look again at the previous figure and consider the amount of
effort required to create a bus mux schematic vs. the bus mux VHDL code.

VHDL source code for implementing a more
complex mux’ing circuit, such as one that
might select any one of four logic function
outputs to pass through to the output, is
shown on the right. This example code uses
a “conditional assignment” statement.
Conditional assignment statements and
selected signal assignments both allow
more complex logic requirements to be
succinctly described, and they can generally
be used interchangeably. In most cases, a
synthesizer will produce the same circuit
regardless of whether a selected or
conditional assignment statement is used.
There are subtle differences between the
statements, and these differences will be discussed later. For now, it is a matter of personal taste as
to which one is used.

A conditional assignment statement uses the “when-else” language feature to describe compound
logic statements. By following the example code shown, conditional assignments can be written to
describe a wide variety of assignments.

VHDL code for a mux using a conditional assignment

Module #6: Combinational Circuit Blocks Page 5 of 11

Decoders

Decoder circuits receive inputs in the form of an N-bit binary number and generate one or more
outputs according to some requirement. Decoder inputs are typically viewed as a binary number
representing some encoded quantity, and outputs typically drive some other circuit or device based on
decoding that quantity. For example, a PS/2 keyboard decoder decodes the “scan codes” that are
generated each time a given key is pressed (scan codes are unique binary numbers that are assigned
to individual keys on a PS/2 keyboard). Most scan codes are simply sent to the host computer for
parsing, but some perform specific functions. If the “caps lock” key is pressed, a signal is generated to
illuminate an LED on the keyboard, and if “Cntrl-Alt-Del” is pressed, a signal is generated to interrupt
PC operations.

Here, we will examine two different types of decoders – a simple binary decoder, and a seven-
segment decoder that can drive a common numeric data display.

A binary decoder has N inputs and 2N outputs. It receives N inputs (often grouped
as a binary number on a bus) and then asserts one and only one of its 2N outputs
based on that input. If the N inputs are taken as an N-bit binary number, then only
the output that corresponds to the input binary number is asserted. For example, if
a binary 5 (or "101") is input to a 3:8 decoder, then only the 5th output of the
decoder will be asserted and all other outputs will be de-asserted. Practical
decoder circuits are usually built as 2:4 decoders with 2 inputs and 22 (4) outputs,
3:8 decoders with 3 inputs and 23 (8) outputs, or 4:16 decoders with 4 inputs 24
(16) outputs. A decoder circuit requires one AND gate to drive each output, and
each AND gate decodes a particular binary number. For example, a 3:8 decoder
requires 8 AND gates, with the first AND gate having inputs A’· B’· C’, the second
A’· B’· C, the third A’· B · C’, etc.

If a binary decoder larger than 4:16 is needed, it can be built from smaller decoders. Only decoders
with an enable input can be used to construct larger decoder circuits. As with the mux, the enable
input drives all outputs to ‘0’ when de-asserted, and allows normal decoder operation when asserted.

Decoders are most often used in more complex digital systems to access a particular memory
location based on an “address” produced by a computing device. In this application, the address
represents the coded data inputs, and the outputs are the particular memory element select signals. A
typical memory circuit contains a decoder to select which memory element to write, the memory
elements themselves, and a mux to select which element to read.

As with multiplexors, this most common application of decoders is beyond our current presentation, so
instead we will consider a less common, somewhat contrived application. Consider the function of a
decoder and the truth table, K-map, or minterm representation of a given function. Each row in a truth
table, each cell in a K-map, or each minterm number in an equation represents a particular
combination of inputs. Each output of a decoder is uniquely asserted for a particular combination of
inputs. Thus, if the inputs to a given logic function are connected to the inputs of a decoder, and those
same inputs are used as K-map input logic variables, then a direct one-to-one mapping is created
between the K-map cells and the decoder outputs. It follows that any given function represented in a
truth table or K-map can be directly implemented using a decoder, by simply by OR'ing the decoder
outputs that correspond to a truth table row or K-map cell containing a “1” (decoder outputs that
correspond to K-map cells that contain a zero are simply left unconnected). In such a circuit, any input
combination with a ‘1’ in the corresponding truth table row or K-map cell will drive the output OR gate
to a ‘1’, and any input combination with a ‘0’ in the corresponding K-map cell will allow the OR gate to

3:8 binary
decoder

Module #6: Combinational Circuit Blocks Page 6 of 11

output a ‘0’. Note that when a decoder is used to implement a circuit directly from a truth table or K-
map, no logic minimization is performed. Using a decoder in this fashion saves time, but usually
results in a less efficient implementation (here again, a logic synthesizer would remove the
inefficiencies before such a circuit was implemented in a programmable device).

A decoder can easily be described in
behavioral VHDL using a selected signal
assignment statement as shown below. In
the example, both the inputs and outputs are
grouped as busses so that a selected
assignment statement can be used. In this
example, the inputs can be individually
referred to as I(1) and I(0), and the outputs
as Y(0) through Y(3). The code can easily
be modified to describe a decoder of any
size.

De-multilpexor

Our use of the word “multiplexor” has its origins in telecommunications, defining a system where one
signal is used to transmit many different messages, either simultaneously or at different times. “Time-
multiplexing” describes a system where different messages use the same physical signal, with
different messages being sent at different times. Time multiplexing works if a given signal can carry
more traffic than any one message needs. For example, if ten messages each require that 1Kbit of
information be sent every second, and if a communication signal is available that can carry 10Kbits
per second, then time-multiplexing can be used to provide ten 1Kbit time windows each second, one
for each signal. A multiplexor can be used as a simple time multiplexor, if the select inputs are used
to define the time window, and the data inputs are used as the data sources.

A decoder with an enable can be used
as a de-multiplexor. Whereas a
multiplexor selects one on N inputs to
pass through to the output, a de-
multiplexor takes a single input and
routes it to one of N outputs. A
multiplexor/de-multiplexor (or more
simply, mux/de-mux) circuit can be
used to transmit the state of N signals
from one place to another using only
Log2N+1 signals. Log2N signals are
used to select the data input for the mux and to drive the decoder inputs, and the rate at which these
signals change define the time-window length. The data-out of the mux drives the enable-in of the
decoder, so that the same logic levels that appear on the mux inputs also appear on the
corresponding decoder outputs, but only for the mux input/decoder output currently selected. In this
way, the state of N signals can be sent from one place to another using only Log2N+1 signals, but
only one signal at a time is valid.

I3

S0

S1

I2

I1

I0

I1

I2

Y3

Y2

EN

Y1

Y0
Communications

channel

A

B

C

D

A

B

C

D

VHDL code for a 2:4 decoder

Module #6: Combinational Circuit Blocks Page 7 of 11

Seven-Segment Displays and Decoders

Seven-segment displays (7sd) are some of the most common electronic display devices in use. They
can be used to display any decimal digit by illuminating particular segments and leaving other
segments dark. 7sd devices are constructed from seven LEDs that have been arranged in a figure "8"
pattern as shown in the figure below. These LEDs function identically to the individual LEDs – they
emit light when a small current passes through them. The 7sd device can display a particular digit if
certain LED segments are illuminated while others remain dark. As examples, if only segments b and
c are illuminated, then the display will show a '1', and if segments a, b and c are illuminated then the
display will show a '7'. To cause an illuminating current to flow through any given LED segment, a
logic signal must be impressed across the
segment LED. In a typical 7sd circuit, a current-
limiting resistor is placed on the cathode lead,
and a transistor is used on the anode lead to
provide additional current (most signal pins on
digital ICs – like the FPGA on the Digilent board
– cannot provide enough current to light all the
display segments, so a transistor is used to
provide more current).

In order that all 10 decimal digits can be
displayed, a 7sd device requires seven logic
signals, one for each segment. By asserting
particular combinations of these signals, all ten
decimal digits can be displayed.

The Digilent board uses a common anode display, which means that all the anode connections for a
given digit are tied together into a common circuit node as shown below. To illuminate a given
segment in a given digit, a ‘1’ must be applied
to the digit’s anode, and ‘0’ must be applied to
the segment’s cathodes (NOTE: With Digilent
boards, a ‘1’ is applied to a digit’s anode by
applying a ‘0’ to the circuit node that drives the
transistor; thus, the anode signals AN3 – AN0
are “active low”).

A seven-segment decoder (SSD) receives four
signals that represent the four bits of a binary
number, and produces seven output signals
that can drive the seven segments in the
seven-segment display. Thus, for example, if
“0000” is input to the SSD, all outputs except
“g” should be asserted (to cause a ‘0’ to be
displayed on the 7sd). And if “1000” is input to the SSD, then all outputs
should be asserted (to cause an ‘8’ to be displayed). Typically, the input
signals are named B3-B0, and the output signals are given a letter to
indicate which segment they must drive (A-F). As discussed above, each of
the seven outputs could be thought of as a separate 4-input logic design
problem, and optimal circuits for each output could easily be found using
the techniques developed in previous labs. In lab project that accompanies
this module, various methods will be used to optimize (or minimize) the
system as a whole, considering all seven outputs at the same time.

A

B

C

D

E

F

G

B3

B2

B1

B0

B(3:0)

An un-illuminated seven-segment display, and nine

illumination patterns corresponding to decimal digits

A

B

C

D

E

F
G

Module #6: Combinational Circuit Blocks Page 8 of 11

A 7sd can easily be described in VHDL using a selected signal assignment statement. In fact, a
selected assignment statement can be used to implement any truth table by listing the function inputs
on the right of the” when” clause, and the associated outputs on the left. In the example shown below,
the input and output variables are both vectors – the ins represents a 2-bit binary number, and the
outs represent a 4-bit binary number. As discussed in the “muxes” section above, the output variable
outs gets assigned the binary values shown in quotes when ins is equal to the value in the “when”
clause. Thus, if ins is "01", then outs gets assigned "1010".

VHDL code for a seven-segment decoder is partially supplied below. The four inputs (representing a
binary number) have been grouped into a vector called BIN, and the seven segment outputs have
been grouped into a vector called SEG_OUT. Note the "when others" clause in the last line as is
typical for any selected assignment statement. This catch-all “when others” clause is used to assign
the value "0000001" to the seven segment decoder outputs whenever an unspecified input condition
occurs. In this case, this clause can be used to assign an output value when the binary numbers 1010
through 1111 are present on the inputs.

 Example VHDL code for a Seven-Segment Decoder

Priority Encoders

A priority encoder is, in a sense, the dual (or opposite) of the decoder circuit – it
receives N inputs (where N is typically 4, 8 or 16), and asserts an output binary
code of M=log2N bits (so the M-bit binary code is typically 2, 3, or 4 bits). The M-bit
binary code indicates which input was asserted (i.e., in a 4:2 binary encoder, binary
code 00 would be output if the 0th input line was asserted, binary code 01 would be

Priority
Encoder

With ins select

outs <= “0010” when “00”;

“1010” when “01”;

“1100” when “10”;

“1110” when others;

0 0

0 1

1 0

1 1

0 0

1 0

1 1

1 1

1 0

1 0

0 0

1 0

A B F1 F2 F3 F4

INs OUTs

Module #6: Combinational Circuit Blocks Page 9 of 11

output of the 1st input line was asserted, etc.). Since more than one input line to the encoder might be
asserted at any given time, the priority encoder asserts an output code corresponding to the highest
numbered input that is asserted (i.e., if both input line 0 and input line 2 were asserted in a 4:2
encoder, then binary code 10 would be output indicating that input line 2 is the highest line number –
or highest priority input – currently asserted).

At first thought, a four input encoder circuit should require just two outputs. In such a circuit, asserting
the 3rd input signal would cause a “11” output, asserting the 2nd input signal would output a “10”,
asserting the 1st input signal would output a “01”, and asserting the 0th input would output “00”. But
what if no inputs are asserted? Again, a “00” would be appropriate. To avoid creating an ambiguous
“00” output, encoders typically use an “Enable In” (EIN) signal and an “Enable Output” (EOUT) signal.
EIN functions like other enable signals – when it is de-asserted, all outputs are driven to logic ‘0’, and
when it is asserted, the encoder outputs can be driven by the inputs. EOUT is asserted only when EIN is
asserted and no input signals are asserted. Thus, EOUT can be used to distinguish between no inputs
asserted and the 0th input asserted.

Larger encoders can be built from smaller encoder modules in much the same way that larger
decoders can be built from smaller decoder modules. An encoder module that can be used as a
building block for larger encoders must have one additional output called group-signal (GS). GS is
asserted whenever EIN is asserted along with any other input signal, and it is used to form the most
significant bit of the encoded output data element.

Encoder circuits are typically used in digital systems when a binary number that corresponds to a
given input must be generated. For example, individual “call attendant” signals arising from
passengers seated on an airplane could be encoded into a seat number. Priority encoders are also
used when certain input signals must be dealt with in a special manner. For example, if inputs from
several sources can all arrive simultaneously, a priority encoder can indicate which signal should be
dealt with first. Behavioral VHDL code for an encoder is shown below.

Shifters

A shifter is a circuit that produces an N-bit output based on an N-bit data input and an M-bit control
input, where the N output bits are place-shifted copies of the input bits, shifted some number of bits to
the left or right as determined by the control inputs. As an example, the function of an 8-bit shifter
capable of shifting one, two, or three bits to the right or left is illustrated in the top row of the figure

VHDL code for a priority encoder

Module #6: Combinational Circuit Blocks Page 10 of 11

below. The control signals enable several different functions: two bits (A1 and A0) to determine how
many bit positions to shift (0, 1, 2, or 3); a Fill signal (F) determines whether bits vacated by shift
operations receive a ‘1’ or a ‘0’; a Rotate signal (R = ‘1’ for rotate) determines whether shifted-out bits
are discarded or recaptured in vacated bits; and a Direction signal (D = ‘1’ for right) determines which
direction the shift will take.

When bits are shifted left or right, some bits “fall off” one end of the shifter, and are simply discarded.
New bits must then be shifted in from the opposite side. If no Fill input signal exists, then 0’s are
shifted in (otherwise, the Fill input defines whether 1’s or 0’s are shifted in to vacated bits). Shifters
that offer a Rotate function recapture shifted-out bits in vacated bits as shown in the lower row of the
figure above.

Based on the shifter functions Shift, Rotate, Direction, Fill, and
Number of Bits, many different shifter circuits could be
designed to operate on any number of inputs. As an example
of a simple shifter design, the truth table on the right shows
input/output requirements for a four-bit shifter that can shift or
rotate an input value left or right by one bit (R=0 for shift, R=1
for rotate, D=0 for left, D=1 for right). Note the truth table uses
entered variables to compress the number of rows that would
otherwise be required. A minimal circuit can be found from this
truth table using pencil-and-paper methods or a computer-
based minimization program.

Shifters are most often found in circuits that work with groups of signals that together represent binary
numbers, where they are used to move data bits to new locations on a data bus (i.e., the data bit in
position 2 could be moved to position 7 by right shifting five times), or to perform simple multiplication
and division operations (exactly why a bit might want to be moved from one location to another on a
data bus is left for a later module). A shifter circuit can multiply a number by 2, 4, or 8 simply by
shifting the number right by 1, 2, or 3 bits (and similarly, a shifter can divide a number by 2, 4, or 8 by
shifting the number left by 1, 2, or 3 bits).

Truth table for 4-bit shifter with
shift/rotate left/right functions

Module #6: Combinational Circuit Blocks Page 11 of 11

A behavioral VHDL design of a simple 8-bit shifter that can shift or rotate left or right by one bit is
shown below. A conditional assignment statement is used in this example as the only statement in the
architecture body. The “when-else” clause evaluates the state of enable (en), rotate (r), and direction
(d) to distinguish between the possible output vector signal assignments. The first assignment in the
conditional assignment statement assigns all zero’s to the dout bus when en=’0’. The remaining four
assignments make use of the concatenation operator (&) to assign shifted or rotated versions of the
input data bus to the output bus, depending on the states of r and d.

