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Overview 
 
This module introduces the concept of electronic memory. Memory circuits function by storing the 
voltage present on an input signal whenever they are triggered by a control signal, and they retain that 
stored voltage until the next assertion of the control (or trigger) signal. Between assertions of the 
control signal, the input signal is ignored and the output is driven to the most recently stored voltage. 
Since a memory circuit stores the input signal level at each assertion of the control input, the output 
will change immediately after the control signal is asserted (if the input value is opposite to what is 
stored), or it will remain constant. “Memory” occurs between control signal assertions, because the 
output remains constant at the last stored value, regardless of input signal changes. 

 
Two major families of memory circuits are in use today – dynamic memory and static memory. 
Dynamic memory cells use a minute capacitor to store a signal voltage, and they are used in the 
smallest and cheapest memory circuits. Since capacitor voltage decays over time, dynamic memory 
cells must be periodically refreshed or they will loose their stored value. Although this refresh 
requirement adds significant overhead, dynamic memory cells are very small, so they have become 
the most widely used of all memory circuits. Most static memory circuits store a logic values using two 
back-to-back inverters. Static memory devices do not need to be refreshed, and they can operate 
much faster than dynamic circuits. But since they require far greater chip area than dynamic memory 
cells, they are used only where they are most needed – in high speed memories, for example – or 
when only small amounts of memory are required. In this module, we will focus on static memory 
circuits and devices. 
 
Memory circuits need at least two inputs – the data signal to be memorized, and a timing control 
signal to indicate exactly when the data signal should be memorized. In operation, the data input 
signal drives the memory circuit’s storage node to a ‘1’ or ‘0’ whenever 
the timing control input is asserted. Once a memory circuit has 
transitioned to a new state, it can remain there indefinitely until some 
future input changes direct the memory to a new state. This lab 
examines basic circuits that can be used to create electronic memory. 

 
 
Before beginning this lab, you should: After completing this lab, you should: 
 

• Be well practiced in the design of 
various combinational circuits. 

• Be familiar with the Xilinx WebPack 
design tools. 

 

• Understand the design and function of basic 
memory circuits. 

• Be aware of the potential problems that 
might arise when memory circuits sample 
an input signal. 

• Be familiar with the various memory devices 
in use today. 

This lab exercise requires: 

• A Digilent board 

• A PC running the Xilinx ISE/WebPack CAD tools 

 



Module #9: Basic Memory Circuits Page 2 of 12 

 

Background 
 
Introduction to Memory Circuits 
 
Memory circuits can largely be seperated into two major groups: dyanamic memories that store data 
for use in a computer system (such as the RAM in a PC); and static memories that store information 
that defines the operating state of a digital system. Dynamic memory circuits for computer systems 
have become very specialized, and they will be covered in a later lab. This exercise will present 
memory circuits that are used to store information about the operating state of a digital system. 
 
Many electronic devices contain digital systems that use memory circuits to define their operating 
state. In fact, any electronic device that can create or respond to a sequence of events must contain 
memory. Examples of such devices include watches and timers, appliance controllers, gaming 
devices, and computing devices. If a digital system contains N memory devices, and each memory 
device stores a ‘1’ or a ‘0’, then the system’s operating state can be defined by an N-bit binary 
number. Further, a digital system with N memory devices must be in one of 2N states, where each 
state is uniquely identified by a binary number created from the collective contents of all memory 
devices in the system.  
 
At any point in time, the binary number stored in its internal memory devices defines the current state 
of a digital system. Inputs that arrive at the digital system may cause the contents of one or more 
memory devices to change state (from a ‘1’ to a ‘0’ or vice-versa), thereby causing the digital system 
to change states. Thus, a digital system state change or state transition occurs whenever the binary 
number stored in internal memory changes. It is through directed state-to-state transitions that digital 
systems can create or respond to sequences of events. The next lab will present digital systems that 
can store and change states according to some algorithm; this lab will examine the circuits that can be 
used to form memory. 
 
In digital engineering, we are concerned with two-state or bistable memory circuits. Bistable circuits 
have two stable operating states – the state where the output is a logic ‘1’ (or Vdd), and the state 
where the output is a ‘0’ (or GND). When a bistable memory circuit is in one of the two stable states, 
some amount of energy is required to force it out of that state and into the other stable state. During 
the transition between states, the output signal must move through a region where it is astable.  
Memory circuits are designed so that they cannot stay in the astable state indefinitely – once they 
enter the astable state, they immediately attempt to regain one of the two stable states. 
 
The figure on the right provides an adequate analogy. Here, the ball represents the value stored in 
memory, and the “hill” represents the astable region that must be crossed before the memory circuit 
can transition to storing the opposite value. Note that a third potential stable state exists in this 
analogy -with just the right amount of energy, it would be possible to balance the ball directly on top of 
the hill. Likewise, memory circuits also have a third potential stable state, somewhere between the 
two stable states. When memory circuits transition between their two stable states, it is important to 
ensure that enough energy is imparted to the circuit to ensure that the astable region is crossed. 
 
Both the ‘0’ and ‘1’ states in a bistable circuit are easily maintained 
once they are attained. A control signal that causes the circuit to 
change states must deliver some minimal amount of energy to move 
the circuit through the astable state. If the input that causes 
transition from one stable state to the next delivers more than the 
minimum required energy, then the transition happens very quickly. 
If the control signal delivers less than the minimum required energy, 
then the circuit returns to its original stable state. But if the input 
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delivers just the wrong amount of energy – enough to start the transition but not quite enough to force 
it quickly through the astable region – then the circuit can get temporarily “stuck” in the astable region. 
Memory circuits are designed to minimize this possibility, and to decrease the amount of time that a 
circuit is likely to remain in the astable state if in fact it gets there (in the analogy, imagine a very 
pointed summit in the astable region, with very steep slopes). If a memory device were to get stuck in 
an astable state for too long, its output could oscillate, or stay midway between ‘0’ and ‘1’, thereby 
causing the digital system to experience unintended and often unpredictable behavior. A memory 
device that gets stuck in the astable region is said to be metastable, and all memory devices suffer 
from the possibility of entering a metastable state (more will be said about metastability later). 
 
A static memory circuit requires feedback, and any circuit with feedback has memory (to date, we 
have dealt only with feed-forward, combinational circuits without memory). Any logic circuit can have 
feedback if an output signal is simply “fed back” and connected to an input. Most feedback circuits will 
not exhibit useful behavior – they will either be monostable (i.e., stuck in an output “1” or “0” state), or 
they will oscillate interminably. Some feedback circuits will be bistable and controllable, and these 
circuits are candidates for simple memory circuits. Simple feedback circuits are shown below, and 
they are labeled as controllable/not controllable and bistable/not bistable. 
 

 
 
The rightmost two circuits above are both bistable and controllable, and either could be used as a 
memory element. Timing diagrams for these circuits are shown below. 
 
 
Basic Cells 
 
Both circuits below use two inputs named S (for set) and R (for reset), and both use an output named 
Q (by convention, Q is nearly always used to label the output signal from a memory device). The S 
input, when asserted, “sets” the output to a ‘1’, and the R input “resets” the output to a ‘0’. 
 
In the AND/OR circuit on the left below, S must be driven to ‘1’ to drive Q to ‘1’, and R must be driven 
to ‘0’ to drive Q to ‘0’ (so S is active high and R is active low). The output Q is set by the positive pulse 
on S at time 2, and Q remains set until it is reset at time 3. Thus, Q exhibits memory by remaining at 
‘1’ after the input S is deasserted, and during the time between point 2 and point 3 the circuit 
memorized a logic ‘1’. Likewise, when R is asserted (as a negative pulse), Q is reset to logic ‘0’ and it 
remains there until it is set sometime in the future, and the circuit memorized a logic ‘0’. 
 
In the NOR circuit on the right below, S must be driven to ‘1’ to drive Q to ‘0’, and R must also be 
driven to ‘1’ to drive Q to ‘1’ (so both S and R are active high). Because the AND/OR circuit requires 
more transistors, and because its inputs have opposite active levels, it is not used as a memory 
circuit. The reader is highly encouraged to examine the circuits and timing diagrams below, and 
ensure that the behaviors shown are well understood. 
 
The figure below shows the same NOR circuit and a similar NAND circuit. Both of these circuits are 
very commonly used as memory circuits, and they are both called “basic cells”. The timing diagram for 
the NAND basic cell can be easily derived, and it is similar to the NOR diagram shown above. 
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1. Q is undefined until R is asserted

2. Q → ‘1’ when S is asserted

3. Q → '0' when R is asserted

4. Q → '1' when S is asserted

5. Q stays at '1' when S & R asserted

6. Q → '0' when R asserted, S de-asserted 

R

S Q

1. Q is undefined until R is asserted

2. Q → '0' when S is asserted

3. Q → '1' when R is asserted

4. Q → '0' when S is asserted

5. Q stays at '0' when S & R asserted

6. Q → '1' R when asserted, S de-asserted  
 

The NAND and NOR circuits are symmetric, so either input can be labeled S or R. By convention, the 
output that S drives to ‘1’ is called Q, and the output that S drives to ‘0’ is called QN (and thus the 
NOR-based circuit above is mislabeled, while the one below is correctly labeled). In the NOR circuit, a 
‘1’ on S drives Q to ‘1’ (provided R is at ‘0’), and so the NOR circuit inputs are active high. In the 
NAND circuit, a ‘0’ on S drives Q to ‘1’, and so the NAND inputs are active low. 
 
In the figure below, the basic cells have been redrawn as a cross-coupled circuit, with the feedback 
path emboldened for emphasis. In the NOR basic cell, the Q output is derived from the gate driven 
directly by R, and so R can determine the output Q regardless of S: if R is driven to a ‘1’, Q will be a 
‘0’ regardless of S. Thus, a NOR basic cell is said to be “reset dominant”. In the NAND basic cell, the 
input S can determine the output regardless of R: if S is driven to a ‘0’, Q will be ‘1’ regardless of R. 
The NAND basic cell is said to be “set-dominant”. The difference between set and reset dominance 
are evident in the truth table rows where both inputs are asserted. In the reset-dominant NOR cell, Q 
is forced to ‘0’ when R is asserted (last row), and in the set-dominant NAND cell Q is forced to ‘1’ 
when S is asserted (first row). 
 

 
 



Module #9: Basic Memory Circuits Page 5 of 12 

 
Examining the truth tables and figure above yields the following observations: 
 

• The middle two rows of the truth tables are similar for both circuits (i.e., both Q and QN are 
driven opposite from one another when either just S is asserted or just R is asserted). 

• When both inputs are asserted, Q and QN are driven to the same logic level (i.e., they are no 
longer inverses of one another). 

• When neither input is asserted, the logic level present on the feedback loop determines the 
circuit output. 

 
Based on these observations, we can state the following behavioral rules for a basic cell 
(remembering that SET and RESET are active high for the NOR cell and low for the NAND cell): 
 

• When just SET is active, Q is driven to ‘1’ and QN is driven to ‘0’; 

• When just RESET is active, Q is driven to ‘0’ and QN is driven to ‘1’; 

• When both SET and RESET are active, Q and QN are both driven to ‘0’ (NOR cell) or ‘1’ 
(NAND cell); 

• When neither SET or RESET are active, the output is determined by the logic value “stored” in 
the feedback loop. 

 
If both inputs to a basic cell are de-asserted at exactly the same time, the feedback loop can become 
astable, and the memory device can get temporarily stuck in the astable region. This results from the 
fact that two different logic levels are introduced into the feedback loop at the same time, and these 
values “chase” each other around the loop creating an oscillation. The oscillation shown in the 
simulator results from the fact that gate delays can be set to exactly the same value, and inputs can 
be changed at exactly the same time. In a real circuit, gate delays are not identical and input values 
cannot change (to the picosecond) at exactly the same time. Thus, oscillations may be seen, but only 
for a short while. Equally likely is an output that “floats” temporarily between ‘1’ and ‘0’. Either 
behavior represents metastability, where the output from the memory circuit is temporarily not in one 
of the two stable operating states. Metastable states are highly unlikely in a real circuit, and if they are 
entered, they are quickly resolved to a stable state. But it is important to note that the possibility of a 
memory device entering a metastable state can never be eliminated. 
 
Either the NAND or NOR basic cell can be used in practical memory circuits. We will use the NAND 
cell in the following discussion, but similar circuits could be built with the NOR cell. 
 
 
D latch 
 
The basic cell is the most rudimentary memory device, and it is useful in certain situations. But by 
adding only two logic gates to a basic cell, a much more useful memory device called a D-latch can 
be created. A D-latch uses a basic cell for a memory element, but it only allows the value stored in 
memory to be changed (or “programmed”) when a timing control input is asserted. Thus, a D-latch 
has two inputs – the timing control input and a data input. The timing control input, commonly called 
“gate”, or “clock”, or “latch enable”, is used to coordinate when new data can be written into the 
memory element, and conversely, when data cannot be written. In the figure on the left below, 
observe that when the Gate input is not asserted, S and R are driven to ‘1’ and the output Q is 
determined by the value stored in the basic cell feedback loop (and so Q is showing the stored logic 
value). In the figure on the right, observe that when the Gate input is asserted, the D (for Data) input 
drives S and R to opposite levels, forcing a SET or RESET operation on the basic cell. By combining 
a timing control input and a data input that forces the basic cell to either SET or RESET, an useful 
memory device is created. The D-latch is widely used in all sorts of modern digital circuits. 
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A timing diagram for the D latch is shown below. Note that when the Gate input is asserted, the output 
Q simply “follows” the input. But when the Gate input is not asserted, the output “remembers” the 
value present at D at the time the Gate signal was de-asserted. 
 
 

 
 
Problem 4: Create and simulate a structural VHDL file for a D-latch as directed in the exercise 

document. 
 
D Flip-Flop 
 
All useful memory devices have at least two inputs – one for the 
Data signal to be memorized, and a timing control signal to define 
exactly when the Data signal should be memorized. As shown in the 
figure, the current output of a memory device is called the “present 
state”, and the input is called the “next state” because it will define 
the memory at the next assertion of the timing control input. In a D 
latch, the present state and next state are the same as long as the 
timing control input is asserted. A D-flip-flop modifies the function of 
a D latch in a fundamental and important way: the next state (or D 
input) can only be written into the memory on the edge (or transition) 
of the timing signal. 
 
A D-flip flop (DFF) is one of the most fundamental memory devices.  A DFF 
typically has three inputs: a data input that defines the next state; a timing control 
input that tells the flip-flop exactly when to “memorize” the data input; and a reset 
input that can cause the memory to be reset to ‘0’ regardless of the other two 
inputs. The “D” in DFF arises from the name of the data input; thus, the flip-flop 
may also be called a data flip-flop. The timing control input, called “clock”, is used 
to coordinate when new data can be written into the memory element, and 
conversely, when data cannot be written. A clock signal is most typically a square wave that regularly 
repeats at some frequency. A DFF records (or registers) new data whenever an active clock edge 
occurs – the active edge can be either the rising edge or the falling edge. A rising-edge triggered 
(RET) DFF symbol uses a triangle to show that the flip-flop is edge-triggered; a falling-edge triggered 
(FET) DFF symbol uses the same triangle, but with a bubble on the outside of the bounding box (just 
like any other asserted-low input). The timing diagram below illustrates RET DFF behavior. Note that 
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the Q output changes only on the active edge of the clock, and the reset signal forces the output to ‘0’ 
regardless of the other inputs. 
 

 
 
 
As with the basic cells, a D flip-flop or D latch can 
enter a metastable state if the data and control inputs 
are changed at exactly the same time. In a D latch, 
the data must be stable when the control input is de-
asserted. In a DFF, the data input must be stable for 
a time immediately before and immediately after the 
clock edge. If the data is not stable at the clock edge, 
a metastable state may be clocked into the memory 
element. If this happens, the memory element may 
not be able to immediately resolve to either low 
voltage or high voltage, and it may oscillate for a 
time. Thus, when designing circuits using edge-
triggered flip-flops, it is important to ensure the data input is 
stable for adequate time prior to the clock edge (known as 
the setup time), and for a time after the clock edge (known 
as the hold time). Setup and hold times vary between 
several tens of picoseconds (for designs inside single IC’s) 
to several nanoseconds (for designs using discrete logic 
chips). 
 
A schematic for a basic D flip-flop is shown on the right. 
Several slightly different schematics can be found in various 
references, but any circuit called a DFF will exhibit the same 
behavior. 
 
 
Memory device reset signals 
 
When a memory device is first powered up, it is not possible to predict whether the 
internal feedback loop will start up storing a ‘0’, ‘1’, or metastable state. Thus, it is 
typical to add an input signal (or signals) that can force the feedback loop to ‘1’ or ‘0’. 
Called “reset” or “preset”, these signals are independent of the CLK or D inputs, and 
they override all other inputs to drive the stored value to a ‘0’ or ‘1’ respectively. 
These signals are most useful when a memory device is first initialized after power-
on, but they can be used at any time to force the output low or high regardless of the 
state of the CLK or D signals.  
 
 

 

Q
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Other inputs to memory devices 
 
In addition to the reset and preset signals, two other signals are often included in memory device 
circuits. The first, called clock enable (or CE) can be used to render the memory device either 
responsive or non-responsive to the CLK signal. In many applications, it is convenient to temporarily 
disable the clock to a memory device. It is tempting to do so by running the clock signal through an 
AND gate with an enable signal driving one side of the gate. For many reasons, this is a poor design 
technique that should be avoided, particularly when designing with FPGA’s (in fact, many modern 
CAD tools do not allow logic outputs to drive clock inputs). Although most of the reasons for not 
“gating the clock” are beyond the scope of this module, one reason is because the output of the clock-
gating AND gate can glitch, causing unwanted clock pulses to “leak” through. The CE input has been 
specially designed to disable the clock while avoiding possible glitches.  
 
Another frequently encountered signal in memory devices is a synchronous reset that drives the 
memory device output to ‘0’ on the next rising edge of the clock. The synchronous reset signal simply 
drives one side of an AND gate inside the memory device (with the other side of the AND gate driven 
by the D input). 
 

 
 
 
Other flip-flops 
 
The DFF is the simplest and most useful edge-triggered memory device. Its output depends on a Data 
input and the clock input – at the active clock edge, the device output is driven to match the device's 
data input. The D-FF can be used in any application that requires a flip-flop. Over the years, other flip-
flops have been designed that behave similar to, but not exactly like a DFF. One common device, 
called a JK flip-flop, uses two inputs to direct state changes (the J input sets the output, and the K 
input resets the output; if both are asserted, the output toggles between ‘1’ and ‘0’). Another common 
device, the T flip-flop, simply toggles between “1” and “0” on each successive clock edge so long as 
the T input is asserted. These devices were commonly used in older digital systems (especially those 
built of discrete 7400 logic ICs), but they are rarely encountered in modern designs. Both JK-FF and 
T-FF can be easily constructed from DFFs or from first principles using basic cells. In modern digital 
design, and particularly in designs destined for FPGAs or other complex logic chips, these other flip-
flops offer no advantages and they will not be dealt with further here. 
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Registers 
 
A register is a group of one or more DFF’s that share a common clock 
and reset signal, with each flip-flop having a separate input and 
separate output. Registers are used when the contents of an entire bus 
must be memorized at the same time. Common register sizes include 1-
bit (which is just a flip flop), 2-bit, 4-bit, 8-bit, and 16-bit. As with 
individual flip-flops, registers may have preset, clock enable, or 
synchronous reset inputs. 
 
 
Other memory circuits 
 
Many other circuit topologies that exhibit memory are used in modern 
digital circuits. For example, the dynamic memory circuits used in 
computer memory arrays use a small capacitor to store digital signal 
levels. Fast SRAM structures (like those used in a computer’s cache 
memory structure) use cross-coupled inverters to form a bistable cell. 
Cross-coupled inverters present a much smaller RAM cell, but they can 
only be programmed by “overdriving” the output of the feedback resistor 
using powerful write buffers. Non-volatile memory devices (such as the 
FLASH BIOS ROM in PCs) use floating gates to permanently store 
memory bits. Together, these “other” memory circuits make up the vast majority of memory devices in 
use today. The basic cell and flip-flop circuits shown here are conceptually simple, but they are not 
that common in modern digital design. These other memory circuits will be covered in more detail in 
later exercises. 
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VHDL Descriptions of Memory Devices 
 
Structural VHDL can be used to describe memory circuits in exactly the same way as conventional 
“feed-forward” circuits are described. For example, the statements  

Q  <= (S nand QN) after 1ns; 

QN <= (R nand Q) after 1ns; 

define a pair of cross-coupled NAND gates that form a basic cell. Similar code can be used to define a 
D-latch or D-FF. Structural VHDL code written in this manner allows more detailed modeling of 
circuits, because delays can be added to every logic gate.  
 
Behavioral VHDL can also be used to describe flip-flops, latches, and other memory circuits by using 
a process statement. The process statement is the most fundamental VHDL statement, and it is the 
“behind the scenes” basis for all signal assignment statements we have seen so far. 
 
 
Process statements in VHDL 
 
Assignment statements (like those shown above) can be directly mapped to physical circuit devices, 
and their simulation requirements are straightforward – whenever a signal on the right-hand side of 
the assignment operator changes state, the simulator evaluates the logic expression to determine if 
the output must be driven to a new value. During the time the simulator is evaluating the expression, 
no physical time passes (here, physical time refers to the time-course of circuit events being modeled 
by the simulator, as opposed to the computer execution time needed to run the simulation). 
 
A process statement allows more general circuit descriptions than a simple signal assignment 
statement. It contains a “begin – end” block, wherein multiple VHDL statements can describe more 
complex behaviors. It also contains a list of signals in a “sensitivity list”; the process is only simulated 
when one of the listed signals changes state. An assignment statement is simulated whenever one of 
the signals on the right-hand side of the assignment operator changes state, and therefore it is an 
“implicit” process. A process statement is explicit, because it lists the signals to which it is sensitive, 
and provides an area for describing more complex circuits. 
 
All VHDL signal assignment statements are concurrent, meaning they are not executed in any 
particular sequence, but rather, whenever a signal on the right-hand side of the assignment operator 
changes state. They are concurrent in the sense that no physical time passes while the assignment 
statements are being evaluated. Since physical time in a simulator is simply a counter value stored in 
some variable, any number of assignment statements can be simulated without changing the timer-
counter value. This has the effect of allowing any or all assignment statements to be completely 
evaluated at the same physical time, which defines concurrency. (Of course, the computer will require 
some amount of execution time, but that is not related to the physical time being modeled in the 
simulator). A process statement is also concurrent, and all statements in the “begin – end” block 
execute in zero time – that is, without the physical time variable being changed. 
 
Within the “begin – end” block in a process statement, sequence does matter. Statements inside of a 
process statement are executed in the order written, and events that occur over time can be checked. 
Because statements inside of a process are subject to sequence and time, if-then-else relationships 
can be modeled, and this is the key to defining memory behaviorally: if the clock transitions high, then 
store a new value. If-then-else statements can also be used to describe many other circuit behaviors, 
but they are only really needed for behavioral descriptions of memory circuits. 
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In behavioral VHDL, an if-then-else statement must be used inside of a process statement to describe 
a flip-flop or latch. In fact, when describing circuits for synthesis, there is no need to use a process 
statement for any other purpose (although many engineers to choose to use process statements to 
make certain code more convenient or more readable). The key to defining memory is to under-
specify the if-then-else relationship: “if the clock transitions from low to high, then change the output to 
match the input”. No direction is given on how to drive the output if the clock goes high-to-low, or if the 
input signal changes. The VHDL analyzer interprets this under-specification, or lack of direction on 
how to proceed under some input conditions, as an implied request to keep the output at its current 
level regardless of changes on certain inputs (like the input, or clock going high-to-low), and this 
defines memory. 
 
The VHDL simulator stores values for all signals 
in a design during a simulation run, so it can 
detect which signals are changing at any given 
physical time. Any time a signal changes, a 
“signal event” occurs, and that event is stored by 
the simulator as an attribute of the signal. VHDL 
code can check signal attributes in an if-then-else 
statement to determine whether a clock signal 
has changed state, and that check is an essential 
ingredient in the behavioral description of flip-flops. In the example shown, following the “process” 
keyword is a list of signals in parenthesis. This is the sensitivity list, and the process will execute 
whenever sig1 or sig2 changes. The “begin” keyword must follow the sensitivity list, and between the 
“begin and “end” keywords any valid VHDL statements can be used to describe circuit behaviors. In 
this example, a nested if-then-else is used, with the second if-statement starting with the keyword 
“elsif”. Using an “elsif” allows the entire compound if-statement to be closed with a single “end if”. The 
same behavior could be described with two independent if-statements (i.e., “else if” instead of elsif”), 
but then two “end if” statements would be required. Continuing with the example, if sig1 changes and 
it is a ‘1’, then the output Y is driven to ‘0’; if sig2 changes and it is currently a ‘1’, then by definition it 
must have just become a ‘1’ (i.e., a rising edge occurred), and in that case, the output Y is driven by 
the input signal X. An if-statement must be closed with “end if”, and a process must be closed with 
“end process”, and these are the final two lines in the example. 
 
Several examples of behavioral VHDL defining DFF’s 
are presented to the right and below. In constructing 
behavioral code for a flip-flop, note that only two 
signals can cause the output to change – clock and 
reset. The data signal by itself cannot change the 
output; rather, the rising edge of the clock changes 
the output to match the D signal. Thus, only the “clk” 
and “rst” signals appear in the sensitivity list. The first 
example shows a flip-flop with a clock enable and an 
asynchronous reset, where the reset signal drives the 
output to a ‘0’ regardless of the clock or data input. 
The second example shows a synchronous reset, 
where the reset signal drives the output to ‘0’, but 
only on the rising edge of the clock. The third 
example shows an 8-bit D-register. Study all the 
examples, and be sure you understand them, and 
their differences. 
 
 

entity DFF is 

  port (D,clk,rst,ce : in STD_LOGIC; 

                   Q : out STD_LOGIC); 

end DFF; 

 

architecture behavioral of DFF is 

begin 

  process(clk, rst) 

  begin 

    if rst ='1' then Q <= '0'; 

      elsif (CLK'event and CLK='1') 

        then if ce = ‘1’ then Q <= D; 

      end if; 

    end if; 

  end process; 

end dff_arch; 

 

Behavioral D Flip-Flop with Clock Enable and  
Asynchronous Reset 

  process(sig1, sig2) 

  begin 

   if sig1 ='1' then Y <= '0'; 

     elsif (sig2'event and sig2='1') 

       then Y <= X; 

   end if; 

  end process; 

 

A process statement with attribute check 
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entity DFF is 

  port (D, clk, rst : in STD_LOGIC; 

                Q : out STD_LOGIC); 

end DFF; 

 

architecture behavioral of DFF is 

begin 

  process(clk, rst) 

  begin 

     if (CLK'event and CLK='1') then 

       if rst ='1' then Q <= '0'; 

       else Q<=D; 

   end if; 

  end process; 

end dff_arch; 

 

 

Behavioral D Flip-Flop,  Synchronous Reset 

entity DFF is 

  port (D : in STD_LOGIC_VECTOR(7 downto 0); 

       clk : in STD_LOGIC_VECTOR(7 downto 0); 

       rst : in STD_LOGIC_VECTOR(7 downto 0); 

       Q : out STD_LOGIC_VECTOR (7 downto 0)); 

end DFF; 

 

architecture behavioral of DFF is 

begin 

  process(clk,rst) 

  begin 

   if rst ='1' then Q <= '0'; 

     elsif (CLK'event and CLK='1') then Q <= D; 

   end if; 

  end process; 

end dff_arch; 

 

     Behavioral D Register with Asynchronous Reset 


