
Introduction to VHDL

Module #5

Digilent Inc. Course

Background

� Availability of CAD tools in the early 70’s
� Picture-based schematic tools

� Text-based netlist tools

� Schematic tools dominated CAD through
mid-1990’s
� Using a graphics editor to build a structural

picture of a circuit was easy compared to
typing a detailed, error-free netlist

� expensive graphics-capable workstations

� Designs not compatible between computers or
CAD tools

Background

� Early text-based tools gained momentum
� Tools weren’t tied to high-end computers

� Progress in IC fabrication made it possible to
place more transistors on a chip
� Schematic methods were not scaling very well

� A designer could specify the behavior of a circuit
that requires several thousand logic gates
� Several layout engineers need weeks or months to

transfer that behavior to patterns of transistors.

� Increase in complexity require more engineers on
larger teams
� Much larger technical data shared between workers.

Background

� 1981, U.S. DOD brought together a consortium of
leading technical companies, and asked them to
create a new “language” that could be used to
precisely specify complex, high-speed integrated
circuits.

� detailed behavior of any digital circuit could be specified

� This work resulted in the advent of VHDL, an
acronym for “Very-high-speed integrated-circuit
Hardware Description Language”.

Background

� VHDL is used to provide a detailed design
specification of a digital circuit

� little thought given to how a circuit might be
implemented

� A ”synthesizer” produces a low-level,
structural description of a circuit based on
its VHDL description

� Automated behavioral-to-structural translation

� Reduced amount of human effort

Background

� Use of HDL and synthesizers
revolutionized the way in which digital
engineers work

� Early 1990s: very few new designs were
started using HDLs (the vast majority were
schematic based).

� Mid 1990’s: roughly half of all new designs
were using HDLs

� Today: all but the most trivial designs use HDL
methods.

CAD Tools

� Front-end tools
� Allow a design to be captured and simulated

� Virtual circuits

� Back-end tools
� Synthesize a design, map it to a particular

technology, and analyze its performance

� Physical circuits

� Several companies offer CAD HDL tools
� VHDL

� Verilog

VHDL vs. Verilog

� Both are similar in appearance and
application

� Both have their relative advantages.

� We will use VHDL because a greater
number of educational resources have
been developed for VHDL than for Verilog

� It should be noted that after learning one
of the two languages, the other could be
adopted quickly

Digital Design Today

� HDLs have allowed design engineers to increase
their productivity many fold in just a few years.
� A well-equipped engineer today is as productive as a

team of engineers a few years ago.

� To support this increased level of productivity,
engineers must master a new set of design skills
� Craft behavioral circuit definitions that meet design

requirements
� Understand synthesis so results can be interpreted
� Model external interfaces to the design so that it can be

verified

� The extra degree of abstraction that HDL allows
brings many new sources of potential errors
� Designers must be able to recognize and address such

errors when they occur

Structural vs. Behavioral Design

� A behavioral circuit design is a description
of how a circuit’s outputs are to behave
when its inputs are driven by logic values
over time.
� no information to indicate how a circuit might

be constructed

� A structural circuit definition is essentially
a plan, recipe, or blueprint of how a circuit
is to be constructed
� no information to indicate how a circuit might

behave

� HDL Files: commonly a mixture of the two

Structural vs. Behavioral Design

� When a behavioral circuit is synthesized, the
synthesizer must search through a large
collection of template circuits, and apply a large
collection of rules to try to create a structural
circuit that matches the behavioral description.
� The synthesis process can result in one of several

alternative circuits being created due to the variability
inherent in generating rule based solutions.

� When a structural description is synthesized, the
synthesizer’s job is a relatively straightforward,
involving far fewer rules and inferences.
� A post-synthesis structural circuit will closely resemble

the original structural definition (preferred by designers)

Structural vs. Behavioral Design

� In general, it is far easier and less time
consuming to define a given circuit using
behavioral methods
� Allow engineers to focus on high-level design

considerations
� Not allow engineers to control structure of final circuit.
� Synthesizers must use rules that are applicable to wide

range of circuits, and cannot be optimized for a
particular circuit.

� In some situations, engineers must have greater control
over final structure of their circuits.

� Often, engineers start design with behavioral
description so they can readily study the circuit
and possible alternatives.
� Once a particular design is chosen, it is recoded in

structural form so synthesis becomes more predictable.

Structural vs. Behavioral Design

� Instead of using GUI to add gates and
wires to a schematic, HDLs editors use a
text editor to add structural or behavioral
descriptions to a text file.

� Behavioral descriptions describe the
conditions required for a given signal to
take on a new value.

� Structural descriptions use components
interconnected by signal names to create
a netlist

Simulation and Synthesis

� A VHDL design can be simulated to check
its behavior, and/or synthesized so that it
can be implemented.

� These two functions, simulation and
synthesis, are really separate functions
that do not need to be related.

� In a typical flow, a new design would be
simulated, then synthesized, and then
simulated again after synthesis to ensure
the synthesizer did not introduce any
errors.

HDL Design Flow

� During synthesis, designer
can impose design constraints
� Power consumption

� Implementation area

� Operating speed

� Designers must understand
synthesis process very well
� Must be able to thoroughly

analyze the postsynthesis circuit
to make sure that all required
specifications are met

Structure of VHDL Source Code

VHDL Example

VHDL Syntax

� Port : input and output signals

� “std_logic” type: physical signals

� Other signal data types: abstract only

� Signal assignment operator “<=”: indicate
how an output signal is to be driven

� “A <= B”: signal A gets assigned signal B
� VHDL simulator requires some time passes

before signal is allowed to take new value

� voltage on wire cannot change instantaneously

� Different from C language

VHDL Syntax

� VHLD code is inherently concurrent
� At any given time, several signal assignments

may be pending.

� Cause-and-effect relationships are not a
function of where a statement occurs in the
VHDL code, but rather how time is modeled

� Signal assignment operators assign output
signal new value based on a function that
operates on input signals
� and, or, nand, nor, xor, xnor, and not

� Must be terminated with a semicolon.

