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Topic Today

» Matrix Computations

Computational complexity of common matrix operations
Examples of matrix decompositions

How to solve linear system of equation Ax=b on a computer

Vector / Matrix norm definitions

vV VvV vV vV v

Conditioning of matrices
» Least squares problem
» Iterative linear system solution methods

» Vector calculus (differentiation with respect to a vector)



Matrix Vector Multiplication

» Consider an nxm matrix A and nx| vector x:

ail a2 A1m Iy
d21 422 A2m | Z2
A= T =
 Qn1 QGn2 - QGnum | Ly |

» Matrix vector multiplication b=Ax is given as,

(i1
bi = i1 T1 + a2 + - + AimTm = Y a4
j=1




Matrix Vector Multiplication

» If b = Ax, then b is a linear combination of the columns of

A.
b
ba

br

» Computer pseudo-code:

r) +

a9 A1m
a22 aA2m
. :I:z+" + .
An2 _ . Unm
b+ 0
fory=1,...,m
fori=1,...,n
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Computational Complexity:
Flop Count and Order of Complexity

» Real numbers are normally stored in computers in a
floating-point format.

» Arithmetic operations that a computer performs on
these numbers are called floating-point operations (flops)
» Example: Update b; ¢ b; + a;;z;
| Multiplication + | Addition = 2 flops
Matrix-vector multiplication : 2 nm flops or O(nm)

For nxn matrix x (nx|) vector: O(n?) operation

Doubling problem size quadruples effort to solve



Matrix-Matrix Multiplication

» If A'is an nxm matrix, and X is mxp, we can form the
product B = AX, which is nxp such that,

m
bij = E Qik Tk;
k=1

» Pseudo-code: B« 0
fori=1,...,n
forj=1,...,p
2mnp flops  fork = 1I,....,m
[ bij < bij + Qip Ty

Square case: O(n’%)



Systems of Linear Equations

» Consider a system of n linear equations in n unknowns

1171 + Q1222 + '+ A1pTh = 0
02171 + Q22T2 + - + A2, Ty, = bo

» Can be expressed as Ax=b such that
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Systems of Linear Equations

» Theorem: Let A be a square matrix. The following six
conditions are equivalent

(a) A1 exists.
(b) There is no nonzero y such that Ay = 0.

(¢) The columns of A are linearly independent.
(d) The rows of A are linearly independent.
(e) det(A) # 0.

(f) Given any vector b, there is exactly one vector x such that Az = b.



Methods to Solve Linear Equations

» Theoretical: compute A-! then premultiply by it:
A'TAx=A'b = x=A'b
» Practical: A-!' is never computed!
Unstable

Computationally very expensive

Numerical accuracy

» Gaussian elimination ??
Computational complexity?

Numerical accuracy!?

» Explore ways to make this solution simpler



Elementary Operations

» A linear system of equation Ax=b remains the same if we:
Add a multiple of one equation to another equation.
Interchange two equations.

Multiply an equation by a nonzero constant.

» Explore ways of solving the linear system using these
elementary operations

» Gaussian elimination is an example of such method
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Triangular systems of equations

» Lower triangular systems

g O 0 0
921 g22 O -+ O
G = g31 4g32 4§33 :
: : : .0
L Gnl gn2 Gn3 " Gnn _
» Consider linear system Gy=b: Forward Substitution
Y1 = b1/911

y2 = (b2 — g21y1) /922
» Upper triangular system: Backward Substitution

» Efficient computation for such special matrices



Cholesky Decomposition

» Cholesky Decomposition Theorem: Let A be a symmetric
positive definite matrix. Then A can be decomposed in
exactly one way into a product A = R'R

a;xn a2 a3 -+ Qin
21 Qg2 QG233 -+ A2y
a3z1 AaG32 AaG33 -+ AQ3pn
| Gn1 QGnr2 Qn3 Gnn |
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— T3 T23 T3z 0 0 0 T33 Tan

Tin T2n T3n * Tnn i O O O Tnn




Solution Using Cholesky Decomposition

» Consider problem Ax=b
» Then, use Choleskly decomposition to put A= RTR
» Then, Ax=b = RTRx=b
» Let Rx=y then solve R'y=b
triangular system of equations that is easy to solve

» Then, solve Rx=y

Another triangular system of equations that is easy to solve



LU Decomposition

» LU Decomposition Theorem: Let A be an nxn matrix
whose leading principal submatrices are all nonsingular.
Then A can be decomposed in exactly one way into a
product A=L U as:

a1 412 a3 Q1n
G21 Q22 Q423 -+ Q2p
azy Qaz2 4azz --- Qa3n
Anl Gn2 Qan3 °°° Gpn |
1 0 0 0 | -’Uv11 U2 U3 -+ Uin
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Vector Norm

» Measure of distance

» Definition:

A norm (or vector norm) on R" is a function that assigns to each z € R" a
non-negative real number || z||, called the norm of z, such that the following three

properties are satisfied for all z, y € R™ and all o € R:

|z|| >0ifz#0, and |/0]|=0 (positive definite property) (2.1.1)
|az]|| = |a| || z] (absolute homogeneity)  (2.1.2)
lz+y]| <|z|+ ]|yl (triangle inequality) (2.1.3)

» Example: Euclidean norm

n 1
2
|z, = Zlmtl
=1

/2



Vector Norm

» General definition of p-norm:

n 1/p
|z, = (leilp)

i=1

» Examples:
2-norm: Euclidean distance

| -norm: (taxicab norm or Manhattan norm)

n
i=1

I2lle = max ||

oO0-norm:



Vector Norm

» Example:

draw the circles defined by the following equations: ||x||,= | ,

[<ll= 1 {1x]]=




Matrix Norm

» A matrix norm is a function that assigns to each AeR™" a
real number ||A]| such that:

| A

| A
|A+ B
|AB

>

{

IA A

0if A#0
al || Al
[All + (| B]|
[A[ B

(submultiplicativity)

» Example: Frobenius norm (commonly used)

ZZ)/

=1 j=1

(2.1.18)
(2.1.19)
(2.1.20)
(2.121)



Matrix Norm
II Az ||

» Induced (operator) norm | Al =
=20 [z

» Special case:induced p-norm or Matrix p-norm

lAz][,,
[zl

I4]l, = max

Theoretically important
Expensive to compute

Frobenius norm is NOT the matrix 2-norm (=max eigenvalue)
» Theorem: || Az|| < [|Afl[|z]]
» Examples:

(a)uAnl—mamem () [ All = max > lay]

1<3<n



Condition Number

» Consider a linear system equation and its perturbation:

Az = band A(x + dz) = b+ db
» Then, Adr = &b or 8z = A~16b

TS ez < 1AM 6]
» Also, b” < | AH ”37 ‘
» Combining equations:
loz|l _ 1 110b]|
All ||A™

» Define the condition number as:

r(A) = || A[l[]A7]



Condition Number

» Using induced matrix norm, x(A) > |
» Matrices with x(A) > 1000 are considered ill-Conditioned

Numerical errors in solving Ax=b are amplified in the solution
by the condition number

» Estimation of condition number: from eigenvalues: divide
maximum eigenvalue by the minimum eigenvalue or

K(A) = A, A
» For singular matrices, x(A) = oo

min

» Condition number improvement by scaling equations
possible

ERtHIRED



Roundoff Errors

» Floating point number presentation 123456 x 107
Mantissa .123456

Exponent 7

» Problems occur when adding numbers of very different
scales

» If a computation results in a number that is too big to be
represented, an overflow is said to have occurred.

» If a number that is nonzero but too small to be
represented is computed, an underflow results.

» Machine epsilon: smallest positive floating point number s
such that fi(| +s)>1 (Homework to compute)



Sensitivity Analysis

» Using perturbation analysis, show how stable the solution
is for a particular matrix A and machine precision s.
Condition number describes the matrix only

Be careful with choice of single vs. double precision since time
gain may end up causing major errors in result !



Least-Squares Problem

» To find an optimal solution to linear system of equations
Ax=b that does not have to be square and it is desired to
minimize the 2-norm of the residual

C di(t1)  P2(t) - dm(tr) | f S Y1
$1(t2) data) -+ Om(t2) ml Yo
1(ts)  ¢a(ts) -+ dm(ts) S T

3 @1 (‘tn) ¢'2(.tn) (bm(tn) J tm 3 yn _

n>m : overdetermined system (least-squares solution)

n<m: underdetermined system (minimum-norm solution)



Orthogonal Matrices

» An orthogonal matrix has its inverse the same as its
transpose

RR'=I Q'Q=1 Q"=Q™
Determinant = |

Condition number = | (ideal)

Orthogonal transformations preserve length

Orthogonal transformations preserve angle

Example: rotators and reflectors



QR Decomposition

» Any nxn matrix A can be decomposed as a product QR
where Q is an orthogonal matrix and R is an upper
triangular matrix

» Solution of Ax=b is again straightforward:

QRx=b
Let Rx=y and solve Qy=b (solution is simply y= QTb)
Then solve triangular system Rx=y as before

» Advantage of QR solution: excellent numerical stability

» Overdetermined case (A is nxm with n>m): QR
decomposition is still possible with :

-]t



Singular Value Decomposition (SVD)

» Let A be an hxm nonzero matrix with rank r.Then A can
be expressed as a product:

A=UzvT
» Where:
U is an nxn orthogonal matrix

V is an mxm orthogonal matrix

2 is an nxm diagonal matrix of singular values in the form:

g1
g2




Solution of Least Squares Using SVD

» Condition number can be shown to be equal to:
g1
Ko(A) = —
On

» In order to improve condition number, we can solve the
equation after replacing the smallest singular values by
zero until the condition number is low enough

Regularization of the ill-conditioned provlem
“Pseudo-inverse” or “Moore-Penrose generalized inverse”

Al = yxiy”

» Highest numerical stability of all methods but O(n?)



Computational Complexity

» Cholesky's algorithm applied to an nxn matrix performs
about n3/3 flops.

» LU based decomposition applied to an nxn matrix
performs about 2n3/3 flops.

» Gaussian elimination applied to an nxn matrix performs
about 2n3/3 flops.

» QR decomposition: 2nm?-2m?3/3 flops
» SVD has O(n?3) flops

» All are still too high for some problems

Need to find other methods with lower complexity



Iterative Solution Methods

» Much less computations of O(n?)
» Steepest descent based methods

» Conjugate gradient based methods



Steepest Descent Methods

» Looks for the error b-Ax and tries to remove this error

in its direction
r—r—Azrx

p— 7

k+ 0

do until satisfiedor k = {
et g+ Ap
a+p'r/p'q
T+ Tr+ap
rr—aq
p+— 7?
B L k—k+1

if not satisfied, set flag

Set p + r to get steepest descent.



Conjugate Gradient (CG) Method

» Suppose we want to solve the following system of linear
equations Ax = b where the n-by-n matrix A is
symmetric (i.e., AT = A), positive definite (i.e., x TAx >0
for all non-zero vectors x in R"), and real.

» We say that two non-zero vectors u and v are conjugate
(with respect to A) or mutually orthogonal if: uTAv=0

not related to the notion of complex conjugate.

» Suppose that {p,} is a sequence of n mutually conjugate
directions.Then the p, form a basis of R", so we can
expand the solution x: of Ax = b in this basis:

I
Ky — E Py
i=1

http://en.wikipedia.org/wiki/Conjugate_gradient_method




Conjugate Gradient (CG) Method

» To compute the coefficients:

Xy = Z ; P;

i=1

i=1

PIh = Pr;fﬂl‘i* = Z EF:‘PEAE' = EF;;P;E&P;;-
(since p, and ﬁilare mutually conjugate for i=k)

P'.l].:lb — {Ph,h} — {Ph:h}
PrAp.  (Pe,pr)a Pkl

¥ —

» Can compute the solution in maximum n iterations!
Removes the error in “mutually-orthogonal” directions
Better performance compared to steepest descent

http://en.wikipedia.org/wiki/Conjugate_gradient_method



Iterative Conjugate Gradient Method

» Need to solve systems wheren 7 : : — Az
: p
is so large P
Direct method take too much time k « 0
» Careful choice of directions do until CO‘:‘;’efged ork =1
. —
Start with Ax-b as p, 1 T
pepg
Takes a few iterations to reach a — v/u
reasonable accuracy T T+ ap
\ T T —Qq
W vy ¢ rlr
|| ':l B vyfv
/] pr+8p
: ” V& Vg
//  k+—k+1

if not converged, set flag
Octave/Matlab code available at http://en.wikipedia.org/wiki/Conjugate_gradient_method



Vector Calculus

» Let x and y be general vectors of orders n and m

respective [ Y] B!
X2 V2
X — vV =
— Xy — Vi =
Define n 8}?1 8}"2 o a} m ]
ax dxXq X1
S 0 O
_} d':ff 8.1‘2 3.?4:‘2 8.1‘2
0X : :
d) | 6}2 a}"’m
- dxy, 0y dx, =




Vector Calculus

» Special cases: when x or y are scalars

_ﬂ_
3.1‘1
i a}}' a}( dﬁ'f a 1 8.},!1, a,}i‘”
9y def | x5 Jx [6— x 7 Ox
0X ,
3y
_ 0Xx;, - v
i ] —3
) ). ¢
» Other important derivatives: AX AT
x! A A
x! x 2X
x! Ax Ax + Alx




Exercise

» Write a program to compute Machine Epsilon and report your results.

» Look for Octave/Matlab functions that implement the topics discussed in this
lecture and provide a list of them.

» Modify the conjugate gradient method described in this lecture to allow using
a general real matrix A that is not symmetric or positive definite.

» Implement code for Gaussian elimination, steepest descent and conjugate
gradient methods and compare results (time and accuracy) to SVD based
solution (pseudo-inverse). Use only a few iterations for iterative methods.

» Use vector calculus to show that the solution of Ax=b for symmetric A
minimizes the objective function:

1
flx) = 5 TAx —x"b, xeR"

In all above problems involving linear system solution, use the Hilbert matrix as your A matrix, use a
random x vector, compute b=Ax and use A and b to compute as estimate of the x vector then compare it
to what you have to test your system

You can use available Octave/Matlab functions and write your own code for parts that are not available.



