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Reconstruction from Uniformly Sampled k-Space
Projection-slice theorem

Interlaced Fourier transform

Partial Fourier Methods

Reconstruction from Nonuniformly Sampled k-Space



Reconstruction from k-Space Samples

» Several imaging modalities produce data in k-space
Computed Tomography (CT): radial sampling

Magnetic Resonance Imaging (MRI): several sampling strategies
are used such as radial, spiral,and random sampling

» Main Reconstruction Method: Compute Inverse 2D DFT
to compute the image!
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Image Reconstruction Problem
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Projection-Slice Theorem

» Also known as Central-Slice Theorem
» A property of the Fourier transform

» Relates the projection data in the spatial domain to the
frequency domain

» States that the |D Fourier transform of the projection of
an image at an angle 0 is equal to the slice of the 2D

Fourier transform at the same angle
N
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Projection-Slice Theorem
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Projection-Slice Theorem

» 2D Fourier transformation:
F(k,.K,)= j j f(x,y)-e 78 Y dxdy

» The slice of the 2D Fourier transform at k,=0 is given by:

and at k =0 is given by

F(k,.0) = [ ([ f(x, y)dy)e 2 *dx



Projection-Slice Theorem

» For a general angle, the rotation property of the Fourier
transformation can be used to generalize the
mathematical result for a vertical projection to any angle

0° 45° 90°




Projection-Slice Theorem:
Application to CT

» The projection data can be shown to correspond to
radial sampling of the frequency domain

» It is not straightforward to numerically compute the
image from this frequency domain representation

Limitation of the DFT to uniform sampled data

» Interpolation can be used in the frequency domain to re-
grid the radial sampling to uniform sampling

Cle, 1)




Projection-Slice Theorem:
Application to MRI

» Navigator echo motion estimation

Acquire a single k-space line in the middle to estimation linear
translation in this direction

» Early MRI reconstruction based on backprojection
algorithms



Interlaced Fourier Transform

» A special case of nonuniform Fourier transform




Interlaced Fourier Transform

» Mathematical formulation
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Interlaced Fourier Transform
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Shepp-Logan Phantom

» Numerical phantom used to simulate the human head to
evaluate reconstruction algorithms in computed
tomography

RECONSTRUCTING INTERIOR HEAD TISSUE
FROM X-RAY TRANSMISSTIONS

L., A. Shepp and B. F. Logan
Bell Laboratories
Murray Hill, New Jersey  O7974




Shepp-Logan Phantom

TABLE 1
Ellipses Center Major Axis Minor Axis Theta Gray level

a (0,0) .69 .92 0 2
b (0,-0184) .6624 874 0 -.98
c (.22,0) 11 .31 -18° -.02
d (-.22,0) .16 41 18° -.02
e (0,.35) 21 .25 0 .01
f (0,.1) .046 .0L6 0 .01

(0,-.1) .046 .046 J .02
h (-.08,-.605) .046 .023 0 .01
i (0,-.605) .023 .023 0 .01
J (.06,-.605) .023 .QUd 0 .01




Shepp-Logan Phantom: 3D

Table 1: 3D Shepp-Logan Phantom Specification for MRI

Ellipsoid Center (r,) Half-Axis Angle Spin Portion Tissue
) X Y e a b c L] Density | Subtracted Type
1* 0 0 0 0.72 0.95 0.93 0 0.8 None Scalp
2 0 0 0 0.69 | 092 0.9 0 0.1213] | 2[Prop[1]] Bone &
Marrow
3* 0 -0.0184 0 0.6624 | 0.874 0.88 0 0.98 [13] | 3[Prop|2]] CSFE
4x* 0 -0.0184 0 0.6524 | 0.864 0.87 0 0.745 [14] | 4[Prop|3]] | Gray Matter
5 0.22 0 025 | 041 0.16 | 021 | -720 0.98 5[Prop|4]] CSF
6 0.22 0 -0.25 0.31 0.11 0.22 720 0.98 6[Prop[4]] CSFE
7 0 035 | 025 | 021 025 | 035 0 | 0617 [14] | 7[Propl|4]] White
Matter
8 0 0.1 -0.25 | 0.046 | 0.046 | 0.046 0 0.95 [6] 8[Prop[4]] Tumor
9 -0.08 | -0.605 | -0.25 [ 0.046 | 0.023 0.02 0 0.95 9[Prop[4]] Tumor
10 0.06 | -0.605 | -0.25 | 0.046 | 0.023 0.02 -90° 0.95 10[Prop[4]] Tumor
11 0 -0.1 -0.25 | 0.046 | 0.046 | 0.046 0 0.95 11[Prop|[4]] Tumor
12 0 -0.605 | -0.25 | 0.023 | 0.023 | 0.023 0 0.95 12[Prop[4]] Tumor
131* 0.06 | -0.105 | 0.0625 | 0.056 0.04 0.1 -90° 0.93 [0] 13[Prop[4]] Tumor
144* 0 0.1 0.625 | 0.056 | 0.056 0.1 0 0.98 14[Prop[4]] CSE
15%1 0.56 -0.4 -0.25 0.2 0.03 0.1 700 0.85 [15] Not Used | Blood Clot

* Regions that were not in original Shepp-Logan (S-L) phantom, ** Slightly mod:fied from original S-L phantom, 13D
phantom only, 1 Optional region for original S-L phantom, not used herein. Portion subtracted: e.g., 2[Prop[1]] means
we subtract an ellipsoid with Ellipsoid 2’s geometry (center and dimenstons) but Ellipsoid 1°’s MR properties (relaxation
and spin density). Scalp spin density is based on muscle/fat water content since skin water content is highly variable.

Tumor spin density is based on its x-ray attenuation coefficient [6].




Shepp-Logan Phantom: k-Space

» Using the known Fourier transformation of the Shepp-
Logan phantom components (circles and ellipses), one can
generate the analytical form of its Fourier transformation

Can be sampled arbitrarily to generate uniformly or
nonuniformly sampled data for close to real data generation

Applications include radial sampling (e.g., CT and MRI), spiral
and random sampling (MRI).

» This will be the standard for all evaluation procedures of
image reconstruction methods.



Partial Fourier Reconstruction

» PF reconstruction is based on the fact that if the object is
real in image space, its Fourier transform is Hermitian.

One-half of the k-space is needed to reconstruct a real image

» In reality, however, the reconstructed images are complex.

Partial Fourier
Reconsruction

Quantitative Evaluation of Several Partial Fourier
Reconstruction Algorithms Used in MRI

G. McGibney, M. R. Smith, S. T. Nichols, A. Crawley

MRM 30:51-59 {1993)



Conjugate Synthesis

» Assume image is purely real
Conjugate
Synthesis




Margosian Method
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Cuppen/POCS Method
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Phase Correction Effects
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FIR and MoFIR Methods
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Comparison of Distortions in

Margosian and MoFIR Methods

ORIGINAL DATA PHASE CORRECTION MERGING FILTER
s(u) Nu Hiu)
r u L 4 / -
- ——
handwidth
(2p+1)
MERGING FILTER PHASE CORRECTION REFLECTION & ADDITION
slu)H(u) (s(u)H(u))*O(u)

4

Z

MoFIR RECONSTRUCTION

PHASE CORRECTION

slu)*HNu)

1.

MERGING FILTER

(s(u)*Nul)H(u)

/|

4% =

REFLECTION & ADDITION




Experimental Verification:
Simulated Box and Real Data
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Results

CONJUGATE SYNTHESIS

GE = GLOBAL ERROR
LE = LOCAL ERROR POCS (4 ITERATIONS)

oy(o) Ipy(x)l
GE=89.3% LE=92.7%
EXACT ESTIMATE INCORRECT ESTIMATE =

GE-—O 072% LE=0. 001% GE=1.148% LE=0. 019%
MARGOSIAN
Ilpy(x)l Alpy(x)l

Ip, ()l
J t l X

GE=1.767% LE=0. 097% GE=2.722% LE LE=0. 004%

MoFIR

GE=0.437% LE=0.001% GE=2.734% LE=0.003%

X X
GE=2.79% LE=0.640%  GE=3.48% LE=0.650%

CUPPEN (4 ITERATIONS)
Ip, )l

lpy(x)l

J f L& x [ -
GE=.026% LE=0.001%  GE=0.986% LE=0.067% -
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Conjugate Margosian Cuppen POCS MOFIR
Symmetry iterations) (4 iterations)
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Global/Local Error: 263%/1.68% 0.34%/0.043% 0.33%/0.041% 0.46%/0.056%




Results

Comparison of the Times of the Partial Fourier Reconstruction
Algorithms Both Individually and in Conjunction with the Phase
Estimation Algorithms

Partial Partial Partial
Partial Fourier Fourier Fourier
Fourier  plus plug plus
only fitered JENEralized o omial
(s)  estimate series estimate
estimate
(s) (s) (s)
Conjugate-symmetry 2.4 7.1 464 7.1
Margosian-homodyne 2.9 7.6 464 7.6
Cuppen (4 iterations) 12.5 17.2 474 17.2
POCS (4 iterations) 14.6 19.3 476 19.3
FIR (direct) 9.6 14.3 471 14.3
FiR {circular) 5.3 10.0 467 10.0

MoFIR (circular) 5.3 10.0 467 10.0




Results
» 256x256 image, |16 Lines

» 8 Lines




Reconstruction from Nonuniformly
Sampled k-space: Conventional Gridding

» Conventional gridding through convolution with

interpolation kernel (O’Sullivan, 1985; Jackson et al.,, 1991;
Meyer et al., 1992)

Selection of
Gridding
Kernel
Sampling
Trajector
J y Sampling Inverse 2D
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Meyer Gridding Algorithm

Fast Spiral Coronary Artery Imaging

CRAIG H. MEYER,* BoB S. HU,¥ DWIGHT G. NISHIMURA,
AND ALBERT MACOVSKI}

4. Convolve the data into the 2D array. This is done by multiplying each density-
compensated data point by a Kaiscr—Bessel window a few grid points in width, eval-
uating the result at each grid point within the window, and adding the result into the
array. An auxiliary array is used to keep track of the amount of energy put into each
grid point, which is the product of the density-compensation factor and the Kaiser-
Bessel function evaluation.

5. Normalize the energy in each grid point by dividing by the auxiliary array. If
the density compensation of step 3 is done properly, this step results in only a minor
correction.

6. Perform a complex 2D FFT.

7. Divide by the transform of the Kaiser—Bessel window to remove the apodization
resulting from the convolution of step 4.

8. Take the magnitude of the result.




Meyer Gridding Algorithm

® Nonuniform Samples @

® IxGrid

O 2x Grid



Jackson Gridding Window Selection

Selection of a Convolution Function for Fourier
Inversion Using Gridding

John 1. Jackson, Craig H. Meyer, Dwight G. Nishimura, Member, IEEE, and Albert Macovski, Fellow, IEEE

TABLE 1
THE PARAMETER VALUES FOR EACH FUNCTION TYPE THAT PROVIDE THE
LEAST RELATIVE ALIASED ENERGY WHEN GRIDDING ONTO A REGULAR GRID

Three-Term cos

Window Two-Term cos Gaussian  Kaiser-Bessel

Width ot o 3 o B
1.5 0.7600 0.8701 0.2311 0.4241 1.9980
2.0 0.7146 0.8099 0.3108 0.4927 2.3934
2.5 (0.6185 0.6932 0.4176 0.4839 3.3800
3.0 0.5534 0.5995 0.4675 0.5063 4.2054
3.5 0.5185 0.5383 0.483] 0.5516 4.9107
4.0 0.4998 0.4891 0.5695 5.7567
4.5 0.4653 0.4972 0.5682 6.6291
5.0 0.4463 0.4985 0.5974 7.4302




Jackson’s Gridding Window Selection

TABLE 11
THE PARAMETER VALUES FOR EacH Fuscmios Type 7HAT PROVIDE THE
LEAST RELATIVE ALIASED ENERGY WHEN GRIDDING ONTO 4 2 X

SUBSAMPLED GRID

Three-Term cos

Window  Two-Term cos Gaussian  Kalser-Bessel
Width o 0 3 a 3

1.5 0.5273 0.4715 04917 0.2120 6.6875
2.0 0.5125 0.4149 0.4990 0.2432 Q.1375
2.5 (.5076 0.4011 0.4996 0.260] J1.5250
3.0 (0.5068 0.3954  0.4997 (0.2920 [3.9086
3.5 (0.5051 0.3897 0.4999 0.3145 162734
4.0 0.3850 0.5000 0.3363 [R.5547
4.5 0.3833  0.5000 00.3557

5.0 0.3823 0.5000  0.3737




Disadvantages of Gridding Methods

» Reconstructed images do not represent optimality in any
sense

» Variation of performance with form of k-space trajectory

» Lack of explicit methodology to trade-off accuracy and
speed of reconstruction

» Not possible to progressively improve the accuracy of
reconstruction



Kadah’s Method

Progressive Magnetic Resonance Image Reconstruction
Based on Iterative Solution of a Sparse Linear System

Yasser M. Kadah,"2 Ahmed S. Fahmy,? 2 Refaat E. Gabr,% 3 Keith Heberlein,' and Xiaoping P. Hu'

» Algebraic Solution

» lterative reconstruction method that provides an optimal
solution in the least-squares sense

» Based on a practical imaging model
» Progressive reconstruction capability

» Simple mechanism to control trade-off between accuracy
and speed



Theory

» Assume a piecewise constant spatial domain representing
display using pixels
Image composed of pixel each of uniform intensity
Image can be represented by a sum of 2D RECT functions
» Assume spatial domain to be compact

Field of view is always finite in length

» The image can be expressed in terms of gate functions as,
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Theory

» Applying continuous Fourier transform,
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» This can be expressed in the form of a linear system as

b=Av

A matrix is ~N2xN?and complex-valued




Theory

» Observation: A matrix is ~N?xN? and complex-valued
Solve a16384x 16384 linear system to get a 128x128 image
Very difficult to solve in practice because of size
I F(ky, kY) |
Sinc (wyk?) - Sinc (wyk9)
F(kyky)

Sinc (w,k}l) - Sinc (Wyk)];)

Pk K

| Sinc (wkE=1) - Sinc (wykL=1)

- Lxl1
=b=A-v
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Idea

4

Problem: A matrix is dense and computational
complexity of solution is prohibitive

Solution Strategy: Try to make the A matrix sparse by
seeking a compact representation of rows in terms of
suitable basis functions

Observation: applying a |-D Fourier transformation to
the rows of A matrix results in energy concentration in
only a few elements



Methods

» Multiply the rows of the system matrix by the NxM-point
discrete Fourier transform matrix H in the following

form:

Kernel magnitude

4000

3500

3000

2500

2000

1500

1000

500

H
B 1
[ 1 1
1 e Jj2n/NM
X
1 e J2r(NM-1)/NM

1
e—i2n(NM—1)/NM

e—j27r(Nﬁf— 1)2/NM

N-MxN-M

. ...............unllmlm ................

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500




Methods

» How to multiply H without changing the linear system?

Row energy compacting transformation converts the system into a
sparse linear system as follows:

b=Av=A-H" - H-v=(H-A")".V =M.V,

» To convert to sparse form, only a percentage n of kernel
energy in each row is retained

The only parameter in the new method
Correlates directly to both image quality and computational
complexity
» Sparse matrix techniques are used to store and manipulate the
new linear system

Since the linear system is sparse, iterative methods such as conjugate
gradient can be used to solve the system with very low complexity




Methods

k-space

k-space trajectory
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Results

» 256x256
Analytical
Shepp-Logan
Phantom

(Radial sampling)




Results

» 256x256 Real data from a resolution phantom at 3T from
a Siemens Magnetom Trio system using a spiral trajectory
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Discussion

» Full control over the accuracy versus complexity trade-off
through n selection

» Computational complexity is comparable to conventional
gridding with small kernel

O(g(n)-L) per CGM step, where g(1) is the average # of
elements/row, L=# of acquired k-space samples

Average 4.9 elements/row to retain 92% of energy
» Progressive reconstruction is possible
Add more iterations to process

Use a different reconstruction table with higher n



Exercise

Use the MRI data set on the web site and write a
program that reconstructs the image using a 2D inverse
Fourier transform.

Write a program to verify the projection-slice theorem
using a simple 2D phantom (e.g., a basic shape like a
square).

Perform interlaced sampling on a function of your
choice with known analytical Fourier transform and
verify the interlaced Fourier transform theorem.

Write a Matlab program to implement the analytical
Shepp-Logan phantom and test it using sampling on a
uniform grid.



Exercise

5. Write a short paragraph (less than 500 words) on

which partial Fourier reconstruction method you prefer
and why.

6. Use the data set on the class web site to implement
one of the methods of partial Fourier reconstruction.
The data set provided is for full k-space for you to have
a gold standard to your reconstruction.You should use

only part of it as an input to your reconstruction (say
half + |6 lines).

7. Do a literature search on the topic of partial Fourier
reconstruction and come up with a list of all references
related to the subject.



Exercise

8. Do a literature search on the problem of nonuniform
sampling in 2D and summarize your findings about the
sampling criteria to avoid aliasing in less than 500 words
(in addition to a list of references).

9.  Write a program to perform gridding on generated
radial k-space sampling of the k-space of the numerical
Shepp-Logan phantom to compute the image.

10. In less than 500 words, describe how one can compare
the quality of different reconstruction methods and/or
parameters based on measurements from the generated
images.



Exercise

II. Verify the energy compactness transformation and
generate in Kadah’s method for any trajectory you
prefer.

12. Assuming that we have a rectilinear sampling instead of
the nonuniform sampling in this paper, how do you
expect the linear system to look like?

13. Assume that we are constructing an NxN image,
compute the exact number of computation (not an
order or computation) detailing the list of computations
in each step in the implementation.



