Medical Image Reconstruction
Term II - 2012

Topic 6:
Tomography
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Tomography

» The Greek word “tomos” means a section, a slice, or a cut.

» Tomography is the process of imaging a cross section
» Particularly useful in medical imaging

Nobody wants to be cut open to see what is inside!

Lets have
a look around.
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Example

» Can you compute the locations of the trees from 2 images!
Answer:Yes

Reconstructed Map
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Example

» Can you compute the values of this matrix given its
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projections!? ) '
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Projection

» Also termed ray sum, line integral, or Radon transform
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Sinogram

» Displays angle dependence of projections

Example: point source on the y-axis to further illustrate

the angle @ dependency of the projection p(s, )
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Projection of Discrete Object

» Projections are weighted by the line-length within each pixel

i€a>p(L6)
e §p<2.9)
-” ¥

>
2(3.60)
all (# £ @I
- - L
F -
" & ay, A 4+
-~
; ,?>>pPL9)
,.r Cl:; (1;4 /’
0’ ,
dy; | Xx, A
-~ -

p(?:,_ 9) = @171 + Ai9T2 + A3z + jal4, 1= 1,_. 2,_. 3,_ 4.




Image Reconstruction of a Point Source

» In image reconstruction, we not only need to find the
location but also the intensity value of the object of

interest ar ~
Backprojection .
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(b) Backproject from one view
Intensity p(s.6)




Backprojection Example

» Blurred version of original

Projection
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Backprojection in Algebraic Form

» Projection P

P=AX. X =[r1.29,23 24]"
-
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— |0
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P = [p(1,0%), p(2.0°). p(1,270°). p(2,270°)|" = [7,2,5.4]".

» Backprojection: use adjoint operator AT
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Radon Transform

', Detector

» Computes parallel projections

at specific angles

f(xy) = p(s,0)

(s,6) / / f(z,y)d(xrcosl + ysinf — s)dxdy,

(s,6) / f(scosf —tsinf, ssinf + t cos @)dt,

/fds. / f(tcos(0)—ssin(0), tsin(0) +scos(0))ds.




Inverse Radon Transform

» Parallel Beam Backprojection

p(s,6) — f(x.y)
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Backprojection in Frequency Domain

» Each view adds a line in the Fourier space

Central area in k-space has higher sample density and results in
effective lowpass filtered spectrum
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Filtered Backprojection

» To counter this blurring effect, we must compensate for

the non-uniformity in the Fourier space .
Density in the Fourier space is proportional to: =
,’WQ + w2

T 1Y

Solution: multiply k-space by ramp filter, /w3 + w2

Method I: Filter individual projections oy Ramp Filter

Method 2: Filter whole Image
» Practical Realization

)

Ram-Lalc Filter Shepp-Logan Filter o
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Hilbert Transform Based Formulation

# (L) 0 =07 ()©).0 (AL .00 = isz (@) s.0)
5= 5 -san(s)

C i-sgn(S)- (‘9(9?{;1(“ 9)) (5,0) = —[S|.F (2)(5.0).

rey) =5 #{# i) 7 (DX s.0)] L)
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Parallel Beam Reconstruction Methods

Method Step | Step 2 Step 3
I ID Ramp filter with | Backprojection
Fourier transform
2 ID Ramp filter with | Backprojection
convolution
4 Backprojection 2D Ramp filter with
Fourier transform
Backprojection 2D Ramp filter with 2D
convolution
3 Derivative Hilbert transform Backprojection
5 Derivative Backprojection Hilbert transform
Backprojection Derivative Hilbert transform
Hilbert transform Derivative Backprojection
Hilbert transform Backprojection Derivative
Backprojection Hilbert transform Derivative




Fan Beam Reconstruction Problem

» Almost all present CT systems use fan beam rather than
parallel beam projections

Much more efficient: faster acquisition, lower patient dose
YA
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Fan Beam Reconstruction Problem

» rebin every fan-beam ray into a parallel-beam ray. For each

fan-beam ray-sum g(J; b), we can find a parallel beam ray-
sum p(s, &) that has same orientation as the fan-beam ray

with the relations,

0=~v+03, s=Dsiny, mmy p(s.0)=g(7.03)

Projection Ray p(s.0)=g(y.p)
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Fan Beam Reconstruction Problem

[ A Parallel- Beam Algorithm ]

ﬂ

[ J(x.y)=[[{p(s.0)and other things with s and 6 }dsd 6 J

@=y+ P and s = Dsiny
Jacobian J(y, )

p(s.0)=g(r.p) —

Substituting Parallel-Beam Data
V Changing Variables

with Fan- Beam Data

[ S(x,¥)=[[igly. B)and other things with y and f}J(y, B)dydp ]

|

[ A Fan- Beam Algorithm ]




Algebraic Reconstruction Technique
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Other Algebraic Methods

» Gradient descent

nexrt current current
L — &L T a’t’:'lf.'?“'?“Ei'?'!.tA(m )

» Maximum-Likelihood Expectation-Maximization

Measurement
P'?" 0 J € C‘t ( xrcurr ent )

Backproject {
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Advanced Tomography Problems

» Reconstruction from incomplete data

Truncated projections
Limited-angle projections
Exterior data

ROI reconstruction
» Extension to 3D

» Stability of reconstruction

Universe: All 2-D Incomplete Data Problems

pS

Resolved Problems
Explicitly Resolved
A




Matlab Functions

» Look up the help for the following function:
radon
iradon
fan2para
fanbeam
ifanbeam
para2fan

phantom



Exercise

» PIl.For a medical image of your choice:
A. Generate the Radon transform and display its sinogram
B. Reconstruct the image back from its projections

C. Compare the two images and record the error for different numbers of projections
and provide your comments.

» P2.Repeat the above problem Pl for a fan beam system (rather than the
parallel beam system in PIl).Also, compare the parallel beams obtained from
rebinning the fan rays and comment on what you found.

» P3.Compare different filtering strategies and provide your choice of the best
methodology based on an experimental study. (study filter type and support,
ID vs. 2D implementation, etc.)

» P4. Compare the parallel beam projections obtained from a Shepp-Logan
phantom to the ones you generate using the analytical Shepp-Logan phantom
and comment on the results.

» P5.Do a literature review on ONE advanced tomography problem and come
up with a | page summary of the state of the art and a comprehensive list of
references.



