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Reconstruction of MR Images from Data Acquired
on a General Nonregular Grid by Pseudoinverse

Calculation
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Abstract—A minimum-norm least-squares image-reconstruc-
tion method for the reconstruction of magnetic resonance images
from non-Cartesian sampled data is proposed. The method is
based on a general formalism for continuous-to-discrete mapping
and pseudoinverse calculation. It does not involve any regridding
or interpolation of the data and therefore the methodology
differs fundamentally from existing regridding-based methods.
Moreover, the method uses a continuous representation of objects
in the image domain instead of a discretized representation.
Simulations and experiments show the possibilities of the method
in both radial and spiral imaging. Simulations revealed that
minimum-norm least-squares image reconstruction can result in
a drastic decrease of artifacts compared with regridding-based
reconstruction. Besides, bothin vivo and phantom experiments
showed that minimum-norm least-squares image reconstruction
leads to contrast improvement and increased signal-to-noise ratio
compared with image reconstruction based on regridding. As an
appendix, an analytical calculation of the raw data corresponding
to the well-known Shepp and Logan software head phantom is
presented.

Index Terms—Generalized reconstruction, magnetic resonance
imaging, medical imaging, pseudoinverse image reconstruction.

I. INTRODUCTION

FOR MANY years, two-dimensional (2-D) Fourier trans-
form (2DFT) imaging has been the most popular method

in magnetic resonance imaging (MRI), in which the MR signals
are sampled on a rectilinear or Cartesian grid in the spatial-fre-
quency -space. The very efficient fast Fourier transform (FFT)
[1], [2] can then be applied to transform the spatial-frequency
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components into the desired image-domain intensities, which
keeps reconstruction times short.

At present, non-Cartesian sampling schemes are becoming
more popular in MRI. For example, extensive research on radial
sampling has been performed and it has in particular been shown
that radial sampling is less sensitive to motion than standard
2DFT imaging [3]–[11]. Several clinical applications of MRI
(e.g., functional MRI and dynamic contrast-agent imaging) rely
on fast data-acquisition schemes that utilize non-Cartesian sam-
pling grids, including some forms of echo-planar imaging [12],
spiral imaging [13]–[16], rosette trajectories [17], [18], and the
application of stochastic-space trajectories [19].

In the case of radial sampling, the filtered backprojection
(FBP) algorithm can be used for the image reconstruction
[20]–[22]. Another method that is widely used to reconstruct
images from data that are sampled on a non-Cartesian grid,
especially in spiral imaging, is the so-called regridding method
[23]–[25]. In this method, the nonrectilinearly measured
data points are resampled onto a Cartesian grid by using an
appropriate convolution kernel and then the FFT algorithm
is used to reconstruct the images. Other techniques, allowing
the use of the FFT algorithm in the case of non-Cartesian
data acquisition, have been developed as well: e.g., Axelet al.
proposed the so-called linogram reconstruction for MRI, an
alternative to conventional convolution/backprojection methods
of reconstruction from projections [26]. A major advantage
of this method is the fact that it avoids the computationally
intensive interpolations required for backprojection. As a result,
linograms offer significant savings in reconstruction time over
conventional backprojection.

In this paper, we propose an alternative for the reconstruction
of MR images from a nonuniform data grid without using any
regridding or interpolation of the acquired data. The method is
based on the fact that MR data acquisition is a special case of
a continuous-to-discrete (CD) mapping, i.e., a mapping of the
continuous object space into a discrete and finite set of data
samples in -space. The reconstruction of an image from the
measured data can then be seen as finding an inverse for this
mapping. In practice, the exact inverse mapping does not exist
and therefore an exact reconstruction of the original object func-
tion cannot be obtained. In this paper, we introduce a method for
the calculation of the minimum-norm least-squares solution of
the inverse mapping problem.

In the following section, the theory that forms the basis for the
image-reconstruction method is explained in general and specif-
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ically for the case of MRI. The theory developed here is related
to the theory proposed in [27], [28]. Its use in the case of recon-
struction based on the radon transform was already described
in the past [29]–[31]. In this paper, however, it is shown that
this theory can be used not only for backprojection-based re-
construction methods but also for a wide variety of MRI recon-
struction problems (e.g., for the reconstruction of images from
data sampled on a spiral trajectory).

By performing simulations and MR experiments the method
is compared with existing reconstruction methods. In the simu-
lations, the Shepp and Logan software head phantom is consid-
ered [32]. Therefore, an analytical expression for the raw data
that correspond to this phantom was calculated. A summary of
these calculations is added to this paper as an appendix.

It should be noticed that this paper describes a reconstruc-
tion method yielding acontinuousreconstruction of the image
function in the case of MRI, which, as far as we know, has not
been reported previously. For example, in [33] the continuous
description of MRI data acquisition is discretized prior to the
image reconstruction based on a linear algebraic model. In this
paper, it will be shown that this discretization step is not neces-
sary in order to be able to reconstruct the images.

II. THEORY

During an MR experiment, data points are acquired in the
spatial-frequency domain. Theth data point is equal to the
spatial-frequency component at the spatial frequencyand
can therefore be written as

(1)

where
position vector;
image function to be depicted (i.e., the complex trans-
verse-magnetization distribution);
is the field of view (FOV).

The purpose of image reconstruction is to find an estimate of
the exact image given the data set .
Note that in all practical situations the image function is a
continuous function of the position vector, while the data are
collected on a discrete and finite grid. In other words, data ac-
quisition in MRI corresponds to a linear CD mapping on a finite
grid, and it is, therefore, not possible to calculate the exact value
of the image function for all values of in . As a result, the
image-reconstruction problem is equivalent to finding “a good
estimate” of .

In the remaining part of this section, we describe how the min-
imum-norm least-squares (MNLS) estimate of
can be calculated. Therefore, we need to introduce the notions
adjoint and pseudoinverse of a linear operator. The mathemat-
ical description for a general CD mapping will be proposed first,
followed by a description specific to the case of MRI.

A. General CD mapping

Consider the general linear CD mapping of a continuous
function to a discrete and finite set of data points

. Mathematically, such a mapping can
be described by

(2)

where is the so-called point-response function of the CD
mapping. This CD mapping can be described by an operator
equation as well

(3)

The operator maps a linear vector space in to a linear
vector space , with and . In this paper, we
will assume that is a compact operator. Moreover, we will
assume , i.e, is the space of square-integrable
functions over . The set of data points will be described by
acomplex column vector and therefore the spaceis chosen
to be . Both and are Hilbert spaces in which scalar
products can be defined as discussed in [34].

Once a CD operator that maps a Hilbert space into a
Hilbert space is defined, its adjoint operator that maps
into [and which is, therefore, a discrete-to-continuous (DC)
operator] can be defined by [35]

(4)

As stated earlier, the general reconstruction problem that is
dealt with in this paper is calculating an estimate for
when is given. Here, we will try to find the MNLS
solution of equation (3). The notion of the (Moore–Penrose)
pseudoinverse allows us to find the MNLS solution
of (3) [36], [37]

(5)

with denoting the Moore–Penrose pseudoinverse.
To be able to calculate this MNLS solution it is necessary

to calculate the pseudoinverse of , and the latter can be
performed by using the following equation:

(6)

Therefore, we need to investigate the operator more
closely. The operator is a matrix operator that maps

into itself, and it can therefore be represented by an
element of . In the remaining part of this paper,
we will often shortly refer to this matrix operator as
“the matrix” . The corresponding matrix elements

are found to be

(7)

From this equation it is easily seen that is a Hermitian
operator.

can be calculated by performing the singular value
decomposition (SVD) of . The eigenvalue equation for the
operator is given by , with and the

th eigenvector and eigenvalue, respectively. Operators of the
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form have real and nonnegative eigenvalues [35]. More-
over, it is convenient to order the eigenvaluesby increasing
value, such that for and for

, with being the rank of . From
this, the general MNLS solution of (3) is found to be

(8)

B. MRI as a Special Case of CD Mapping

The formalism described above is valid for any CD mapping
of into that satisfies equation (2). By comparing the latter
equation with the MRI equation that is given in equation (1),
it is seen that MR data acquisition can be described by a CD
mapping of into with

(9)

By substituting equation (9) into equation (7), one finds

(10)

where , denoting the Fourier trans-
form and being the support function

if
otherwise.

(11)

In other words, in the case of MRI, the matrix element
equals the Fourier transform of the support function evaluated
at the spatial frequency .

In the simulations and experiments that are described below,
2-D MRI with a square FOV of dimension is considered.
Then, the plane can be chosen to be the image plane and
the support function becomes , where
is denoting the delta function and the 2-D in-plane support func-
tion is given by

if and

otherwise.
(12)

By substituting this support function in equation (10) we find

sinc

sinc (13)

with , , and sinc
.

A special case of sampling is standard Cartesian sampling
with fulfillment of the Nyquist condition. Then, the former ex-
pression reduces to with denoting the
Kronecker delta. In this particular case the MNLS solution of
equation (1) is given by

(14)

In other words, in the case of Cartesian sampling with fulfill-
ment of the Nyquist condition, MNLS image reconstruction is

Fig. 1. The Shepp and Logan software head phantom.

equivalent to calculating the inverse discrete Fourier transform
of the data matrix.

In the general case of MRI, however, the MNLS solution
should be calculated from (4)–(6), (8), and (9)

(15)

III. M ETHODS

Simulations and in vivo experiments were performed to ex-
plore the possibilities of the proposed MNLS image-reconstruc-
tion technique. Although this method can be used with any tra-
jectory in -space, attention was restricted to the cases of ra-
dial and spiral MRI in this study. The SVD-based reconstruc-
tion technique was implemented on a Compaq Personal Work-
station (500 au, 704-Mb RAM). In order to solve the corre-
sponding real symmetric eigenvalue problem, we used routines
from the LAPACK/BLAS package (Linear Algebra PACKage;
Basic Linear Algebra Subprograms) [38]. More specifically, the
Double precision; SYmmetric EigenValue problem (DSYEV)
routine was used. The FBP algorithm (cf., infra) was imple-
mented in IDL (Research Systems, Inc.) on a personal computer.
The in vivo experiments were performed on a clinical 1.5-T GE
(Milwaukee, WI) Signa MR scanner.

In all simulations, the Shepp and Logan (SL) software head
phantom was considered [32]. This phantom consists of ten el-
lipses with different intensities and orientations and is shown in
Fig. 1. In this paper, we are treating MR data acquisition as a
special case of a CD mapping. Therefore, we used the contin-
uous representation of the SL phantom rather than a discretized
representation of it. In appendix it is shown how the raw Fourier
data that correspond to an ellipse that is centered at an arbi-
trary point and rotated by an angle relative to the

-axis can be calculated analytically. The continuous raw-data
function as a function of the spatial-frequency variable

is found to be

(16)

where
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;
;

;
, short and long axes of the ellipse;

intensity of the ellipse;
denotes the first-order Bessel function of the first
kind.

Note that equation (16) gives the raw data of the general ellipse
in polar -coordinates in -space. The continuous raw-data
function of the SL phantom was calculated from equa-
tion (16) by adding the raw-data functions that correspond to
each of the ten ellipses in the phantom.

A. Radial Imaging

As a first application of the theoretical concept that was de-
scribed above, simulations were performed with 64 uni-
formly distributed radial lines in-space and 64 uniformly
distributed data points along each radial line. The radial and az-
imuthal sample spacings were and ,
with being the size of the square FOV. From these, the set of
spatial frequencies was calculated. In
the simulations, the elements of the raw-data matrixwere cal-
culated by for . Although
in standard radial scanning the data point at the origin of the

-space is acquired for each radial line, this central data point
was counted only once during the MNLS image reconstruction.
Therefore, only different
data points were used in the calculations instead of .

According to equation (13), the matrix elements
were calculated for each . The solution of
the eigenvalue problem corresponding to the matrix was
found as described before. Next, the radial MNLS image func-
tion was calculated by applying (15). In order to be
able to visualize the image function, it was discretized on a
Cartesian grid in the image domain. It should be emphasized,
however, that discretization in the image domain is performed
only at this occasion, i.e., after the actual image reconstruction
and as a sampling of a continuous image reconstruction.

The radial MNLS images were compared with the images ob-
tained when zero-padded FBP is applied on the same raw-data
matrix. In our implementation of the FBP algorithm, the stan-
dard approach that was proposed in [10], [22], and [39] was fol-
lowed.

B. Spiral Imaging

Both simulated imaging of the SL head phantom and trans-
verse human head imaging with 240 mm were performed
with spiral data acquisition. In the in vivo experiments, the echo
time was set to 40 ms in a first experiment and to 60 ms in
a second experiment in order to increase thecontrast, and
the slice thickness was 5 mm. A one-interleave spiral was used
throughout this study, which contained 3520 different data
points. The corresponding trajectory in-space is shown in Fig.
2. In the simulations, the raw-data matrixwas again calculated
from the knowledge of the-space trajectory and . The
matrix elements were calculated for each

. The SVD calculation of the matrix and the

Fig. 2. Trajectory ink-space in the case of one-interleave spiral imaging with
3520 data points.

calculation of the MNLS image functions were performed anal-
ogously to the algorithm that was described for radial imaging.

The spiral MNLS images were compared with the images
obtained using the regridding method that is described in [24],
which is very widely used in practice because it is computation-
ally fast and robust to measurement errors [40]. The raw data
were first regridded onto a rectilinear grid by using a discrete
Kaiser–Bessel window

if

otherwise
(17)

where is the zeroth-order modified Bessel function of the
first kind. We used a width of 4 and a -value of eight.
Following the regridding, the FFT algorithm was applied to re-
construct the images.

IV. RESULTS AND DISCUSSION

We will first discuss the results for the case of radial imaging.
The eigenvalues, , obtained from solving the eigenvalue
problem corresponding to , are shown in Fig. 3 for the
case of . Until now we assumed that the matrix

is either singular or not. A singular matrix corresponds to
one for which some of the eigenvalues are identically equal to
zero. Although it is difficult to appreciate in Fig. 3, some of the

are very small but none are numerically equal to zero. As
a result, although nonsingular, the corresponding matrix
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Fig. 3. Singular values in the case of64� 64 radial imaging.

(a) (b)

(c) (d)

Fig. 4. The influence of the value of the thresholdT on the corresponding
MNLS image. (a) MNLS image reconstructed without threshold (i.e.,T = 0).
It contains severe artifacts due to roundoff errors. (b) Reconstructed with a
threshold ofT = 1:0 and contains severe artifacts due to the fact that too
many terms are zeroed. (c) MNLS image that is reconstructed with a threshold
T =0.65. (d) Shows the image that is obtained after FBP. The image
quality for MNLS image reconstruction with a suitable threshold and FBP is
comparable.

is ill-conditioned, and this can cause serious roundoff errors
during the SVD calculation [1]. The illconditionedness of
can be expressed by calculating its so-called condition number,
i.e., the ratio of its largest and its smallest singular value.
The higher this condition number the more the corresponding
matrix is ill-conditioned. For the simulations that are discussed
here, the condition number was .

Fig. 5. Singular values in the case of spiral imaging with 3520 data points.

Direct application of equation (15) would lead to the assump-
tion since numerically none of the are zero. How-
ever, in situations where the condition number is large, it is often
useful to use a threshold for the calculation of : is
set to 0 when . In Fig. 4, the importance of choosing
a suitable threshold is illustrated for the case of 6464 ra-
dial imaging. Fig. 4(a) is reconstructed without threshold and
contains severe artifacts due to numerical errors that are accu-
mulated during the SVD calculation. Fig. 4(b) is reconstructed
with a threshold of 1.0 and contains severe artifacts as well.
This is due to the fact that too many terms are zeroed in (15)
when 1.0 is used (cf., Fig. 3). A suitable threshold can be
chosen by looking at the behavior of the eigenvalues in Fig. 3. A
threshold was chosen near the “kink” where thestart to drop
to very small values. With a threshold of 0.65, the
image shown as Fig. 4(c) in Fig. 4 is obtained. Fif. 4(d) shows
the image obtained with standard FBP. The image quality for
MNLS image reconstruction with a suitable threshold and FBP
is comparable, although the MNLS image contains slightly less
severe ringing artifacts.

As is stated in [31], the use of a threshold for the calcula-
tion of regularizes the resulting images. This is a spe-
cial case of a more general approach, in which one tries to
minimize the large noise amplification that is often observed
when pseudoinverse calculations are performed in a straight-
forward way (i.e., without regularization). Other solutions for
the ill-posedness and (numerical) accuracy problems encoun-
tered when pseudoinverse calculations are performed have been
reported already, including the method of Tikhonov–Phillips,
the use of iterative reconstruction methods, or methods based
on statistics [41], [31]. The use of these methods implies some
smoothness requirement. Fig. 4 can be considered to be an il-
lustration of this.

The values for the case of spiral imaging with 3520 data
points are shown in Fig. 5. A threshold 0.85 was de-
rived from this plot. In Fig. 6 the corresponding MNLS image
of the SL phantom is compared with the image obtained with
regridding and FFT. The MNLS image contains obviously less
artifacts than the image obtained with the regridding algorithm.
This is also seen in Fig. 7. In this figure, the pixel intensities
along a horizontal line at the center of the FOV are compared
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(a) (b)

Fig. 6. (a) Comparison of the MNLS and (b) regridding-based simulated SL
phantom reconstruction in the case of spiral imaging with 3520 data points.

(a)

(b)

Fig. 7. Pixel intensities along a horizontal line at the center of the FOV,
compared with the theoretical pixel intensities in (a) the MNLS and (b)
regridding images that are shown in Fig. 6. The ringing artifacts and
overshoot at edges are more pronounced in the case of regridding-based image
reconstruction than in the case of MNLS image reconstruction.

with the theoretical pixel intensities for both images. The ampli-
tude of the ringing artifacts and the overshoot at edges are more
pronounced in the case of regridding-based image reconstruc-
tion than in the case of MNLS image reconstruction.

Fig. 8 shows transverse images of a human head ob-
tained with the one-interleave spiral trajectory containing
3520 different data points. Again, the MNLS images contain

(a) (b)

(c) (d)

Fig. 8. Transverse images of a human head reconstructed from 3520 data
points along a one-interleave spiral trajectory. (a) MNLS image with TE= 40

ms. (b) Corresponding image obtained after regridding and FFT. (c) MNLS
image with TE= 60 ms. (d) Corresponding image obtained after regridding
and FFT. As in the simulations, the MNLS images contain less artifacts.
Moreover, the image contrast and SNR are superior in the MNLS images.

significantly less artifacts than the images obtained from regrid-
ding-based image reconstruction. Moreover, the contrast in the
MNLS images is higher than the contrast in the corresponding
regridding-based images. Finally, from the observation of the
images in Fig. 8, the signal-to-noise ratio (SNR) of the MNLS
images seems to be higher than the SNR of the images that are
reconstructed after regridding of the data. In order to quantify
this SNR increase, imaging of a uniform water phantom was
performed, by using the same spiral trajectory that was used for
thein vivoexperiments. Two images of the same phantom were
acquired and from these, a difference image was calculated.
The SNR of the phantom images was calculated by dividing the
mean pixel intensity in the phantom by the standard deviation
of the pixel distribution in the difference image. This resulted
in a SNR of 30 in the case of regridding-based reconstruction
and a SNR of 36 in the case of MNLS image reconstruction.

Recently, a study on the optimality of the regridding method
has been published in which it was shown that the regridding
method is an approximation to the least-squares solution [40].
Moreover, a framework for the calculation of the optimal grid-
ding parameters was given. This framework has only been val-
idated by a hardware phantom study. Our results, including the
in vivo images obtained with a spiral trajectory, are in agree-
ment with the conclusion that the regridding method offers an
approximation to the least-squares approach.

Some remarks concerning the reconstruction time are in
order. Solving the eigenvalue problem that is related to the
MNLS reconstruction method is a time-consuming step. It took
about 75 minutes (in double precision) on a Digital Personal
Workstation (500 au, 704-Mb RAM) for the case of 4033
different data points. The calculation of the pseudoinverse

from the solution of the eigenvalue problem took
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about 30 min. It should be emphasized, however, that the
eigenvalue-problem and pseudoinverse calculations
must be performed only once for each data grid (i.e., for each
type of data acquisition). The calculation of the MNLS image
from the knowledge of the pseudoinverse and the MR data
requires a number of multiplications in the order of , and
the reconstruction of an MNLS image from the knowledge of
the pseudoinverse and the MR data took only a few seconds.

As was stated before, in the case of MNLS image reconstruc-
tion, discretization in the image domain is performed only after
the actual image reconstruction. The proposed MNLS image re-
construction results in acontinuousimage function, which is
not the case for existing reconstruction schemes such as dis-
crete Fourier transform, FBP, or regridding. As a result, MNLS
image reconstruction would allow us to visualize images on a
random grid in the image domain directly, i.e., without interpo-
lation. Moreover, the choice of the image grid has no influence
on the image reconstruction and can be chosen arbitrarily.

V. CONCLUSION

In this paper, an MNLS image-reconstruction method was
presented, which is based on a general formalism for CD map-
ping and pseudoinverse calculation. The method is an alterna-
tive to existing regridding-based image reconstruction methods
when MR data are sampled on a non-Cartesian grid. The fact
that the method results in a continuous image function, and the
fact that it does not involve any regridding or interpolation of
the acquired data makes it fundamentally different from existing
image-reconstruction methods.

The potential of the method was illustrated by simulations
and in vivo experiments. Two data-acquisition techniques were
considered: radial and spiral imaging. Simulations based on ra-
dial sampling showed the importance of a careful choice of a sin-
gular-value threshold during the reconstruction of images based
on the formalism that was proposed in this paper. This is due
to the ill-conditionedness of the problem. In the case of spiral
imaging, simulations revealed that MNLS image reconstruction
can result in a drastic decrease of artifacts compared with the
widely used regridding-based reconstruction that was presented
earlier by Jackson [24]. Also in experiments with spiral MRI, a
decrease of artifacts in the case of MNLS image reconstruction
was observed, as well as an increase of both SNR and image
contrast.

A recent study has been reporting promising results con-
cerning an improved regridding method compared to Jackson’s
method [40]. A comparison of our results to the results that
are obtained by this method could be an interesting topic
for future research. Moreover, a task-based assessment of
the proposed reconstruction method could be a next topic of
research. When high resolution is primordial, the slightly lower
spatial resolution in MNLS images could be a drawback of
the method. However, applications were the SNR is important
(e.g., detection of low-contrast lesions or low-contrast image
changes) could benefit from the MNLS image reconstruction
approach.

APPENDIX

ANALYTICAL EXPRESSION FOR THERAW DATA OF THE SHEPP

AND LOGAN HEAD PHANTOM

The SL head phantom is the superposition of several ellipses
in the image domain. Therefore, the corresponding raw data can
be calculated analytically once an analytical expression for the
FT of a general ellipse is known. This expression will be derived
in this appendix.

An ellipse that is centered at the origin (i.e., its center point
) and has axes parallel to theand axes, can

be described by

if

otherwise
(18)

with being the coordinates that correspond to the posi-
tion vector , and are the axes of the ellipse, andis its
intensity. The continuous 2-D MR raw-data function that corre-
sponds to the ellipse, , equals its FT. By using the Fourier
slice theorem [42], and by considering Poisson’s Bessel func-
tion formula [43], the MR signal corresponding to the projec-
tion of along a projection axis with projection anglecan
be written in polar -coordinates

(19)

with and denoting
the first-order Bessel function of the first kind.

Now we consider a general ellipse , i.e., an ellipse with
arbitrary center point and rotation angle relative to
the -axis. The projections of are related to the pro-
jections of by

(20)

with and . By using equa-
tions (19) and (20) on the one hand and the Fourier shift theorem
on the other hand [42], we finally obtain an analytical expres-
sion for the MR signal that corresponds to

(21)

with .
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