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Reconstruction of MR Images from Data Acquired
on a General Nonregular Grid by Pseudoinverse
Calculation

Rik Van de Wallg, Harrison H. Barrett, Kyle J. Myers, Maria I. Altbach, Bart Desplanques, Arthur F. Gmitro,
Jan Cornelis, and Ignace Lemahieu

Abstract—A minimum-norm least-squares image-reconstruc- components into the desired image-domain intensities, which
tion method for the reconstruction of magnetic resonance images keeps reconstruction times short.
from non-Cartesian sampled data is proposed. The method is At present, non-Cartesian sampling schemes are becoming
based on a general formalism for continuous-to-discrete mapping ' . .
and pseudoinverse calculation. It does not involve any regridding more POPUIar In MRI. For example,_ eXtenS'Ve reseamh on radial
or interpolation of the data and therefore the methodology Sampling hasbeen performed and ithas in particular been shown
differs fundamentally from existing regridding-based methods. that radial sampling is less sensitive to motion than standard
Moreover, the method uses a continuous representation of objects 2DFT imaging [3]-[11]. Several clinical applications of MRI
in the image domain instead of a discretized representation. (e.g., functional MRI and dynamic contrast-agent imaging) rely

Simulations and experiments show the possibilities of the method s - .
in both radial and spiral imaging. Simulations revealed that on fast data-acquisition schemes that utilize non-Cartesian sam-

minimum-norm least-squares image reconstruction can result in Pling grids, including some forms of echo-planar imaging [12],
a drastic decrease of artifacts compared with regridding-based spiral imaging [13]-[16], rosette trajectories [17], [18], and the

reconstruction. Besides, bothin vivo and phantom experiments application of stochastik-space trajectories [19].
showed that minimum-norm least-squares image reconstruction In the case of radial sampling, the filtered backprojection

leads to contrast improvement and increased signal-to-noise ratio FBP) alqorith b d for the i tructi
compared with image reconstruction based on regridding. As an ( ) algorithm can be used for the image reconstruction

appendix, an analytical calculation of the raw data corresponding [20]—[22]. Another method that is widely used to reconstruct
to the well-known Shepp and Logan software head phantom is images from data that are sampled on a non-Cartesian grid,

presented. especially in spiral imaging, is the so-called regridding method
Index Terms—Generalized reconstruction, magnetic resonance [23]-[25]. In this method, the nonrectilinearly measured
imaging, medical imaging, pseudoinverse image reconstruction.  data points are resampled onto a Cartesian grid by using an
appropriate convolution kernel and then the FFT algorithm
is used to reconstruct the images. Other techniques, allowing
the use of the FFT algorithm in the case of non-Cartesian
F OR MANY years, two-dimensional (2-D) Fourier transyata acquisition, have been developed as well: e.g., éixal.
form (2DFT) imaging has been the most popular me"h(groposed the so-called linogram reconstruction for MRI, an
in magnetic resonance imaging (MRI), in which the MR signaigiternative to conventional convolution/backprojection methods
are sampled on a rectilinear or Cartesian grid in the spatial-ftg reconstruction from projections [26]. A major advantage
quencyk-space. The very efficient fast Fourier transform (FFTgs this method is the fact that it avoids the computationally
[1], [2] can then be applied to transform the spatial-frequengytensive interpolations required for backprojection. As a result,
linograms offer significant savings in reconstruction time over
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ically for the case of MRI. The theory developed here is relatdd,,,; m = 1, ---, M }. Mathematically, such a mapping can
to the theory proposed in [27], [28]. Its use in the case of recobe described by

struction based on the radon transform was already described .

in the past [29]-[31]. In this paper, however, it is shown that Gm = / d7 f(F) b (7) )
this theory can be used not only for backprojection-based re- D

construction methods but also for a wide variety of MRI recoRgherep,,, (7) is the so-called point-response function of the CD

struction problems (e.g., for the reconstruction of images frofapping. This CD mapping can be described by an operator
data sampled on a spiral trajectory). equation as well

By performing simulations and MR experiments the method
is compared with existing reconstruction methods. In the simu- g ="Hf({FT). 3)
lations, the Shepp and Logan software head phantom is consid-
ered [32]. Therefore, an analytical expression for the raw datBe operator¥ maps a linear vector spacé in to a linear
that correspond to this phantom was calculated. A summary\§ictor spacé’, with f(7) € U/ andg € V. In this paper, we
these calculations is added to this paper as an appendix. ~ Will assume that{ is a compact operator. Moreover, we will
It should be noticed that this paper describes a reconstr@&sumel/. = L»(D), i.e, U is the space of square-integrable
tion method yielding @ontinuousreconstruction of the image functions overD. The set of data points will be described by
function in the case of MRI, which, as far as we know, has nd€omplex column vectqs and therefore the spadéis chosen
been reported previously. For example, in [33] the continuot@beC" . Both [/ andV" are Hilbert spaces in which scalar
description of MRI data acquisition is discretized prior to theroducts can be defined as discussed in [34].
image reconstruction based on a linear algebraic model. In thi€Once a CD operatdH that maps a Hilbert spad€ into a

paper, it will be shown that this discretization step is not necedilbert spacel” is defined, its adjoint operatd¢' that maps’
sary in order to be able to reconstruct the images_ into U [and which IS, therEfore, a discrete-to-continuous (DC)

operator] can be defined by [35]

Il. THEORY

M
[Hig] (7) = D gm b (7). 4)

m=1

During an MR experiment}/ data points are acquired in the
spatial-frequency domain. Theth data poiny,, is equal to the
spatial-frequency component at the spatial frequengyand ~ As stated earlier, the general reconstruction problem that is
can therefore be written as dealt with in this paper is calculating an estimgte) for f(7)

wheng = H f(7) is given. Here, we will try to find the MNLS

_ o o T o solution of equation (3). The notion of the (Moore—Penrose)
gm = /D dr 1(7) exp (—j2mkm -T) (@) pseudoinverse allows us to find the MNLS solutifiinr.s(7)
of (3) [36], [37]
where )
7  position vector; SunLs(F) = HF g (5)

I(7) image function to be depicted (i.e., the complex trans-. ) )
verse-magnetization distribution); with T denoting the Moore—Penrose pseudoinverse.

D is the field of view (FOV) To be able to calculate this MNLS solution it is necessary
' tgfcalculate the pseudoinverget of H, and the latter can be

The purpose of image reconstruction is to find an estimate . . i
performed by using the following equation:

the exact imagé(7) given the data seftg,,; m =1, ..., M}.
Note that in all practical situations the image functid) is a HT = HT(HHT)+ (6)
continuous function of the position vectorwhile the data are

collected on a discrete and finite grid. In other words, data atherefore, we need to investigate the operaktt(t more
quisition in MRI corresponds to a linear CD mapping on a finitglosely. The operatof{# is a matrix operator that maps
grid, and itis, therefore, not possible to calculate the exact valire into itself, and it can therefore be represented by an
of the image function for all values afin D. As a result, the element of CM*M_ |n the remaining part of this paper,
image-reconstruction problem is equivalent to finding “a google will often shortly refer to this matrix operator as

estimate”/(7) of I(7). “the matrix” HH'. The corresponding matrix elements
In the remaining part of this section, we describe how the miffx(#t],,,,.; m, n =1, ..., M} are found to be

imum-norm least-squares (MNLS) estimdignr.s(7) of I(7)

can be calculated. Therefore, we need to introduce the notions [HHt] = / A7 W2 (F) B (7). )

adjoint and pseudoinverse of a linear operator. The mathemat- m D

ical description for a general CD mapping will be proposed fir

followed by a description specific to the case of MRI. SIrﬂrom this equation it is easily seen tHd#{' is a Hermitian

operator.
(HH")* can be calculated by performing the singular value
decomposition (SVD) olH . The eigenvalue equation for the
Consider the general linear CD mapping of a continuowgeratorHH is given byHH v, = A\xvy, with v, and ), the
function f(7) to a discrete and finite set of data pointg:th eigenvector and eigenvalue, respectively. Operators of the

A. General CD mapping
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form HH' have real and nonnegative eigenvalues [35]. More-
over, it is convenient to order the eigenvalugsby increasing
value, suchthak, = 0fork =1, ---, M — RandXx # 0 for
k=M—-R+1, ---, M,with R being the rank of{*'. From
this, the general MNLS solution of (3) is found to be

) M M 1
funes(T) = Z [( Z L V;t) g] hon(7)- (8)

m=1 k=M-—R+1

B. MRI as a Special Case of CD Mapping

The formalism described above is valid for any CD mapping
of U into V that satisfies equation (2). By comparing the latter
equation with the MRI equation that is given in equation (1¥jg- 1. The Shepp and Logan software head phantom.
it is seen that MR data acquisition can be described by a CD

mapping ofU into V' with equivalent to calculating the inverse discrete Fourier transform
o of the data matrix.
hon(7) = exp (— g2k, - 7) . (9)  In the general case of MRI, however, the MNLS solution

hould b lculated f 4)—(6), (8), and (9
By substituting equation (9) into equation (7), one finds should be calculated from (4)~(6), (8), and (9)

— — N M M 1
[HHT]mn = W(k‘m - k'n)7 (10) IMNLS(F) = Z [ Z <)\—k Vi V;:) g]

k=M—R+1

_ m=1

whereW (k) = F [w(7)] (k), F(-) denoting the Fourier trans-

m

form andw(7) being the support function x exp (j2mkn 7). (15)
(1, ifFeD
w(T) = {07 otherwise. (11) [ll. M ETHODS

Simulations and in vivo experiments were performed to ex-
In other words, in the case of MRI, the matrix elem@iit{']..., plore the possibilities of the proposed MNLS image-reconstruc-
equals the Fourier transform of the support function evaluatggn technique. Although this method can be used with any tra-
at the spatial frequendy,,, — k... jectory in k-space, attention was restricted to the cases of ra-
In the simulations and experiments that are described belgyg| and spiral MRI in this study. The SVD-based reconstruc-
2-D MRI with a square FOV of dimensioft" is considered. tjon technique was implemented on a Compagq Personal Work-
Then, the(z, y) plane can be chosen to be the image plane agghtion (500 au, 704-Mb RAM). In order to solve the corre-
the support function becomes(r) = w(x, y)4(z), wheres(.)  sponding real symmetric eigenvalue problem, we used routines
is denoting the delta function and the 2-D in-plane support fungom the LAPACK/BLAS package (Linear Algebra PACKage;

tion w(z, y) is given by Basic Linear Algebra Subprograms) [38]. More specifically, the
_ F F Double precision; SYmmetric EigenValue problem (DSYEV)
w(z, y) = {17 if [2] < 5 and|y| < 5 (12) foutine was used. The FBP algorithm (cf., infra) was imple-

0, otherwise. mented in IDL (Research Systems, Inc.) on a personal computer.

The in vivo experiments were performed on a clinical 1.5-T GE
(Milwaukee, WI) Signa MR scanner.
= F2SinC(n (ke — Fna)F) In all simulations_, the Shepp aqd Logan (SL) sqftware head
. phantom was considered [32]. This phantom consists of ten el-
X SINC(m (Kmy — Ky ) F7) (13)  |ipses with different intensities and orientations and is shown in
With B = (Fmas Emg)s Fn = (knes Fny), and singz) = Fig. 1 In this paper, we are treating MR data acquisition as a
special case of a CD mapping. Therefore, we used the contin-
gus representation of the SL phantom rather than a discretized
representation of it. In appendix it is shown how the raw Fourier
data that correspond to an ellipse that is centered at an arbi-
Jeary point(z1, ¥1) and rotated by an angle relative to the

By substituting this support function in equation (10) we find

0]

mn

sin(x)/x.

A special case of sampling is standard Cartesian sampli
with fulfillment of the Nyquist condition. Then, the former ex-
pression reduces {81H],,., = F26,.» with §,,,,, denoting the
Kronecker delta. In this particular case the MNLS solution

equation (1) is given by a:—axi; can be calculated.analytically. The continuous ravy—data
function Sy(k) as a function of the spatial-frequency variable
. 1 M B k = kexp(j#) is found to be
Ivanes(7) = 72 Z Gm exp (J27kp, - T) - (14) T Omal Ok
m=1 Sp(k) = exp [—j2nkt cos(y — )] pAB% (16)
In other words, in the case of Cartesian sampling with fulfill- a(f)

ment of the Nyquist condition, MNLS image reconstruction i&here
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t = 22+ spiral trajectory (3520 data points)
o = arctan(yy /x1);
a(®) = \[AZcos(6 - @) + B sin’(6 — a); 200 ¢
A, B short and long axes of the ellipse; 1
p intensity of the ellipse; 150 3 P
Ji1(-) denotes the first-order Bessel function of the firs i »,:.":.'.'..m
Note that equation (16) gives the raw data of the general ellig I .»N R
in polar(k, 8)-coordinates irk-space. The continuous raw-dat:é 50 | ‘...:”‘"
functionSsr, ¢ (%) of the SL phantom was calculated from equa » L s;’g’
tion (16) by adding the raw-data functions that correspond § 1 :g
each of the ten ellipses in the phantom. 2 g%;‘
. . 50 1 ‘.‘:."}':.”::"::':}}sw. /
A. Radial Imaging ~:~ W
As a first application of the theoretical concept that was d -190 ] ci’W"
scribed above, simulations were performed with =64 uni- "&W R
formly distributed radial lines ik-space andV, =64 uniformly 5, 1 R
distributed data points along each radial line. The radial and : [
imuthal sample spacings wefer = (1/F) andAf8 = (w/Ny), 200 L N e o
with _F being the_S|z_e of the square FOV. From these, the set 200 150 -100  -50 0 50 100 150 200
spatial frequencie$k.,,,; m = 1, ..., M} was calculated. In sigma_x
the simulations, the elements of the raw-data majnivere cal- -
culated byg,, = Ssv,e,,(kn) form =1, ..., M. Although Fig. 2. Trajectory ink-space in the case of one-interleave spiral imaging with

in standard radial scanning the data point at the origin of tl3820 data points.

k-space is acquired for each radial line, this central data point

was counted only once during the MNLS image reconstructiogalculation of the MNLS image functions were performed anal-
Therefore, onlyM = N, + (N, —1)(INg — 1) = 4033 different  ogously to the algorithm that was described for radial imaging.

data points were used in the calculations insteal¥,aV,. The spiral MNLS images were compared with the images
According to equation (13), the matrix elemeffité*],... obtained using the regridding method that is described in [24],
were calculated for eachw, » = 1, ..., M. The solution of which is very widely used in practice because it is computation-

the eigenvalue problem corresponding to the matti’ was ally fast and robust to measurement errors [40]. The raw data
found as described before. Next, the radial MNLS image fungrere first regridded onto a rectilinear grid by using a discrete
tion Iynrs(7) was calculated by applying (15). In order to b&aiser—Bessel window

able to visualize the image function, it was discretized on a

Cartesian grid in the image domain. It should be emphasized(”)

however, that discretization in the image domain is performed 2
. . . . . 2n
only at this occasion, i.e., after the actual image reconstruction Iy|By/1— < )
and as a sampling of a continuous image reconstruction. = N-1 . N-—1 N-1
The radial MNLS images were compared with the images ob- Io(B) , - 9 sn < 9

tained when zero-padded FBP is applied on the same raw-data 0, otherwise

matrix. In our implementation of the FBP algorithm, the stan- (17)

dard approach that was proposed in [10], [22], and [39] was fol-

lowed. wherely(-) is the zeroth-order modified Bessel function of the
first kind. We used a width ofV =4 and aB-value of eight.

B. Spiral Imaging Following the regridding, the FFT algorithm was applied to re-

Both simulated imaging of the SL head phantom and tran%(—)nStrUCt the images.

verse human head imaging with =240 mm were performed
with spiral data acquisition. In the in vivo experiments, the echo
time was set to 40 ms in a first experiment and to 60 ms in We will first discuss the results for the case of radial imaging.
a second experiment in order to increasethecontrast, and The eigenvaluesj),, obtained from solving the eigenvalue
the slice thickness was 5 mm. A one-interleave spiral was usablem corresponding té{7", are shown in Fig. 3 for the
throughout this study, which containdd =3520 different data case ofNy = N,. = 64. Until now we assumed that the matrix
points. The corresponding trajectoryfirspace is shown in Fig. HH is either singular or not. A singular matrix corresponds to
2. Inthe simulations, the raw-data matgjxvas again calculated one for which some of the eigenvalues are identically equal to
from the knowledge of the-space trajectory anskr. s(k). The zero. Although it is difficult to appreciate in Fig. 3, some of the
matrix element§H*],., were calculated for eachn, n = \; are very small but none are numerically equal to zero. As
1, ..., M. The SVD calculation of the matri¢/%" and the a result, although nonsingular, the corresponditfg’ matrix

IV. RESULTS AND DISCUSSION
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eigenvalues radial imaging 64x64 eigenvalues spiral imaging 3520 data points
30 \, 15
25 ¥ 12 1
g T
= 20 5
2157 g
(7 ® 51
<10 + r
] 3
5 3
0 g + t = — — t
0 1000 2000 3000 4000 5000 0 = ‘ ‘ ‘ ‘ -
0 1000 2000 3000 4000

k
k

Fi

g. 3. Singular values in the case@f x 64 radial imaging.

Fig. 5. Singular values in the case of spiral imaging with 3520 data points.

Direct application of equation (15) would lead to the assump-
tion R = M since numerically none of the, are zero. How-
ever, in situations where the condition number is large, it is often
useful to use a threshoffi for the calculation ofl /Az: 1/ A is
set to 0 when\;, < 7. In Fig. 4, the importance of choosing
a suitable threshold’ is illustrated for the case of 6464 ra-
dial imaging. Fig. 4(a) is reconstructed without threshold and
contains severe artifacts due to numerical errors that are accu-
mulated during the SVD calculation. Fig. 4(b) is reconstructed
with a threshold of” =1.0 and contains severe artifacts as well.
This is due to the fact that too many terms are zeroed in (15)
when7 =1.0 is used (cf., Fig. 3). A suitable threshold can be
chosen by looking at the behavior of the eigenvalues in Fig. 3. A
threshold was chosen near the “kink” where Mestart to drop
to very small values. With a threshold @§44¢4 =0.65, the
image shown as Fig. 4(c) in Fig. 4 is obtained. Fif. 4(d) shows
the image obtained with standard FBP. The image quality for
MNLS image reconstruction with a suitable threshold and FBP
is comparable, although the MNLS image contains slightly less
severe ringing artifacts.

As is stated in [31], the use of a threshold for the calcula-
tion of 1/A; regularizes the resulting images. This is a spe-
cial case of a more general approach, in which one tries to
minimize the large noise amplification that is often observed

© @ when pseudoinverse calculations are performed in a straight-
Fig. ‘é-_ The inﬂuenceSO_f the value of the tféreshrfifdonhthehcolgespondiﬂg forward way (i.e., without regularization). Other solutions for
I contains sevete arifacts cue (o roundoft rtors. (b) Reconsirucied wit|12€ l-posedness and (numerical) accuracy problems encoun-
threshold of 7 = 1.0 and contains severe artifacts due to the fact that toered when pseudoinverse calculations are performed have been
many terms are zeroed. (c) MNLS image that is reconstructed with a threshpishorted already, including the method of Tikhonov—Phillips,
QUi for MNLS image reconsiruction wih a sutable threshold and FER Fi€ US€ of iterative reconstruction methods, or methods based
comparable. on statistics [41], [31]. The use of these methods implies some
smoothness requirement. Fig. 4 can be considered to be an il-
lustration of this.

The ), values for the case of spiral imaging with 3520 data
is ill-conditioned, and this can cause serious roundoff errop®ints are shown in Fig. 5. A thresholid;>o =0.85 was de-
during the SVD calculation [1]. The illconditionednesstéf(f  rived from this plot. In Fig. 6 the corresponding MNLS image
can be expressed by calculating its so-called condition numbafrthe SL phantom is compared with the image obtained with
i.e., the ratio of its largest and its smallest singular valueegridding and FFT. The MNLS image contains obviously less
The higher this condition number the more the correspondiagifacts than the image obtained with the regridding algorithm.
matrix is ill-conditioned. For the simulations that are discusséihis is also seen in Fig. 7. In this figure, the pixel intensities
here, the condition number wasge + 11. along a horizontal line at the center of the FOV are compared

Authorized licensed use limited to: Cairo Univeristy. Downloaded on February 13, 2010 at 07:27 from IEEE Xplore. Restrictions apply.



VAN DE WALLE et al: RECONSTRUCTION OF MR IMAGES FROM DATA ACQUIRED ON A GENERAL NONREGULAR GRID 1165

Fig. 6. (a) Comparison of the MNLS and (b) regridding-based simulated SL
phantom reconstruction in the case of spiral imaging with 3520 data points.

profile SL phantom - spiral/SVD

1 () (d)
09 1 Fig. 8. Transverse images of a human head reconstructed from 3520 data
0.8 points along a one-interleave spiral trajectory. (a) MNLS image with=TH)

207 ms. (b) Corresponding image obtained after regridding and FFT. (c) MNLS
206 image with TE= 60 ms. (d) Corresponding image obtained after regridding
4“=3 05 - and FFT. As in the simulations, the MNLS images contain less artifacts.
3 04 | Moreover, the image contrast and SNR are superior in the MNLS images.
203
0.2
0.11 z ; | N . . . .
0 NE — it : significantly less artifacts than the images obtained from regrid-
0 10 20 30 40 5 60 70 ding-based image reconstruction. Moreover, the contrast in the
pixel number MNLS images is higher than the contrast in the corresponding
@) regridding-based images. Finally, from the observation of the

images in Fig. 8, the signal-to-noise ratio (SNR) of the MNLS

profile SL phantom - spiral/regridding . . .
‘ images seems to be higher than the SNR of the images that are

17 reconstructed after regridding of the data. In order to quantify

g'z | this SNR increase, imaging of a uniform water phantom was
Zo071 performed, by using the same spiral trajectory that was used for
206 — thein vivoexperiments. Two images of the same phantom were
£os] T penddhd | acquired and from these, a difference image was calculated.
g g'g The SNR of the phantom images was calculated by dividing the
< o2 | mean pixel intensity in the phantom by the standard deviation

0.1 1 of the pixel distribution in the difference image. This resulted

0 ‘ et . ‘ in a SNR of 30 in the case of regridding-based reconstruction

0 10 20 30 40 5 60 70 and a SNR of 36 in the case of MNLS image reconstruction.
pixel number Recently, a study on the optimality of the regridding method
(b) has been published in which it was shown that the regridding

Fig. 7. Pixel intensities along a horizontal line at the center of the FOMEthod is an approximation to the least-squares solution [40].
compared with the theoretical pixel intensities in (a) the MNLS and (dMoreover, a framework for the calculation of the optimal grid-
regridding images that are shown in Fig. 6. The ringing artifacts "’.‘rlfi'ing parameters was given. This framework has only been val-
overshoot at edges are more pronounced_ in the case of reg_rlddlng-based |mgg . .
reconstruction than in the case of MNLS image reconstruction. idated by a hardware phantom study. Our results, including the
in vivo images obtained with a spiral trajectory, are in agree-
ment with the conclusion that the regridding method offers an
approximation to the least-squares approach.
with the theoretical pixel intensities for both images. The ampli- Some remarks concerning the reconstruction time are in
tude of the ringing artifacts and the overshoot at edges are morder. Solving the eigenvalue problem that is related to the
pronounced in the case of regridding-based image reconstriMiNLS reconstruction method is a time-consuming step. It took
tion than in the case of MNLS image reconstruction. about 75 minutes (in double precision) on a Digital Personal
Fig. 8 shows transverse images of a human head dberkstation (500 au, 704-Mb RAM) for the caselaf =4033
tained with the one-interleave spiral trajectory containindifferent data points. The calculation of the pseudoinverse
3520 different data points. Again, the MNLS images contaifi#")* from the solution of the eigenvalue problem took

Authorized licensed use limited to: Cairo Univeristy. Downloaded on February 13, 2010 at 07:27 from IEEE Xplore. Restrictions apply.



1166 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 12, DECEMBER 2000

about 30 min. It should be emphasized, however, that the APPENDIX
eigenvalue-problem an@+#")* pseudoinverse calculations ANALYTICAL EXPRESSION FOR THERAW DATA OF THE SHEPP
must be performed only once for each data grid (i.e., for each AND LOGAN HEAD PHANTOM

type of data acquisition). The calculation of the MNLS image

The SL h h is th iti f | elli
from the knowledge of the pseudoinverse and the MR d e SL head phantom s the superposition of several ellipses

. ber of multiolicat i th der . and 6H‘Ffltheimage domain. Therefore, the corresponding raw data can
requires a numboer of multiplications In the order.at, and —pq ¢qicyated analytically once an analytical expression for the

the reconstruction of an MNLS image from the knowledge gty of a general ellipse is known. This expression will be derived
the pseudoinverse and the MR data took only a few seconds,

. . in this appendix.

i As(;/yas sttg tet(.j be_fotrﬁ o the czse Of. M.NLS |fmagedrecc|)nstfrtuc-An ellipse that is centered at the origin (i.e., its center point
lon, discretization in the image domain IS periormed only a 5:1, 1) = (0, 0)) and has axes parallel to theandy axes, can
the actual image reconstruction. The proposed MNLS image

. : ) . . . 297 e described by
construction results in aontinuousimage function, which is

not the case for existing reconstruction schemes such as dis- i z2 P
crete Fourier transform, FBP, or regridding. As a result, MNLS eo(T) = Pyt A2 + B2 <1 (18)
image reconstruction would allow us to visualize images on a 0. otherwise

7

random grid in the image domain directly, i.e., without interpo- ) _ .
lation. Moreover, the choice of the image grid has no influen¥éth (z, ¥) being the coordinates that correspond to the posi-

on the image reconstruction and can be chosen arbitrarily. tion vectorr, A and B are the axes of the ellipse, apds its
intensity. The continuous 2-D MR raw-data function that corre-

sponds to the ellipse,(7), equals its FT. By using the Fourier
slice theorem [42], and by considering Poisson’s Bessel func-

V. CONCLUSION tion formula [43], the MR signal corresponding to the projec-
tion of ¢ (7) along a projection axis with projection anglean

In this paper, an MNLS image-reconstruction method w&¢ Written in polai(k, #)-coordinates
presented, which is based on a general formalism for CD map- J1(2rag(0)k)
ping and pseudoinverse calculation. The method is an alterna- So,0(k) = pABW (19)
tive to existing regridding-based image reconstruction methods 0
when MR data are sam_pled on a non-Cartesian gr_|d. The f%%h ao(8) = /A2 cos?(8) + B2 sin(6) and J; () denoting
that the method results in a continuous image function, and tﬁhe ) . . .
. . - ; . e first-order Bessel function of the first kind.
fact that it does not involve any regridding or interpolation o

the acquired data makes it fundamentally different from existirg%NOW we conS|de_r a general eIhps(j), €., an eIhpsg with
. . bitrary center poinz;, %1) and rotation anglex relative to
image-reconstruction methods.

i . . . thez-axis. The projectiong’(r) of e(7) are related to the pro-
The potential of the method was illustrated by simulatio 3 " ) pro) _ o(r) of e(7) P
F X o . ctions Py ¢(r) of eo(7) by
and in vivo experiments. Two data-acquisition techniques were '

considered: radial and spiral imaging. Simulations based on ra- Py(r) = Py g—o(r — tcos(y — 6)) (20)
dial sampling showed the importance of a careful choice of a sin-
gular-value threshold during the reconstruction of images baseith t = /2?3 + y? andy = arctan(y; /x1). By using equa-
on the formalism that was proposed in this paper. This is dtiens (19) and (20) on the one hand and the Fourier shift theorem
to the ill-conditionedness of the problem. In the case of spirah the other hand [42], we finally obtain an analytical expres-
imaging, simulations revealed that MNLS image reconstructiaion for the MR signak, (k) that corresponds te(7)
can result in a drastic decrease of artifacts compared with the
widely used regridding-based reconstruction that was presented, (k) = exp [—j2rkt cos(y — 6)] pABM
earlier by Jackson [24]. Also in experiments with spiral MRI, a a(f)k
decrease of artifacts in the case of MNLS image reconstruction
was observed, as well as an increase of both SNR and imag#h a(f) = \/A2 cos?(f — a) + B2 sin*(0 — ).
contrast.
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