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Topic Today

 Matrix Computations

 How to solve linear system of equation Ax=b on a computer !



Matrix Vector Multiplication

 Consider an nxm matrix A and nx1 vector x:

 Matrix vector multiplication b=Ax is given as,



Matrix Vector Multiplication

 If b = Ax, then b is a linear combination of the columns of 

A. 

 Computer pseudo-code:



Computational Complexity:

Flop Count

 Real numbers are normally stored in computers in a 

floating-point format.  

 Arithmetic operations that a computer performs on 

these numbers are called floating-point operations (flops)

 Example: Update 

 1 Multiplication + 1 Addition = 2 flops

 Matrix-vector multiplication :   2 nm flops   or O(nm)

 For nxn matrix x nx1 vector:  O(n2) operation

 Doubling problem size quadruples effort to solve



Matrix-Matrix Multiplication

 If A is an nxm matrix, and X is mxp, we can form the 
product B = AX, which is nxp such that,

 Pseudo-code:

 2mnp flops

 Square case: O(n3)



Systems of Linear Equations

 Consider a system of n linear equations in n unknowns

 Can be expressed as Ax=b such that



Systems of Linear Equations

 Theorem: Let A be a square matrix. The following six 

conditions are equivalent



Methods to Solve Linear Equations

 Theoretical: compute A-1 then premultiply by it:

A-1 A x = A-1 b    x= A-1 b

 Practical:   A-1 is never computed!

 Unstable

 Computationally very expensive

 Numerical accuracy

 Gaussian elimination ??

 Computational complexity?

 Numerical accuracy?

 Explore ways to make this solution simpler



Elementary Operations 

 A linear system of equation Ax=b remains the same if we:

 Add a multiple of one equation to another equation. 

 Interchange two equations. 

 Multiply an equation by a nonzero constant. 

 Explore ways of solving the linear system using these 

elementary operations

 Gaussian elimination is an example of such method



Triangular systems of equations

 Lower triangular systems

 Consider linear system Gy=b:   Forward Substitution

 Upper triangular system:  Backward Substitution 

 Efficient computation for such special matrices



Cholesky Decomposition

 Cholesky Decomposition Theorem: Let A be positive 

definite. Then A can be decomposed in exactly one way 

into a product A = RTR



Solution Using Cholesky Decomposition

 Consider problem Ax=b

 Then, use Choleskly decomposition to put A= RTR

 Then,  A x = b    RTRx= b

 Let Rx= y  then solve RTy= b    

 triangular system of equations that is easy to solve

 Then, solve Rx=y

 Another triangular system of equations that is easy to solve



LU Decomposition

 LU Decomposition Theorem: Let A be an nxn matrix 

whose leading principal submatrices are all nonsingular. 

Then A can be decomposed in exactly one way into a 

product   A= L U  as:



Vector Norm

 Measure of distance

 Definition:

 Example:  Euclidean norm



Vector Norm

 General definition of p-norm:

 Examples:

 2-norm: Euclidean distance

 1-norm: (taxicab norm or Manhattan norm)

 -norm:     



Vector Norm

 Example: 

 draw the circles defined by the following equations: ||x||1= 1 , 

||x||2= 1 , ||x||= 1 
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Matrix Norm

 A matrix norm is a function that assigns to each Anxn a 

real number ||A|| such that:

 Example: Frobenius norm (commonly used)



Matrix Norm

 Induced (operator) norm

 Special case: induced p-norm or Matrix p-norm

 Theoretically important

 Expensive to compute

 Frobenius norm is NOT the matrix 2-norm

 Theorem: 

 Examples:



Condition Number

 Consider a linear system equation and its perturbation:

 Then,                         or 

 Hence, 

 Also, 

 Combining equations:

 Define the condition number as:



Condition Number

 Using induced matrix norm, (A)  1

 Matrices with (A)  1000 are considered ill-Conditioned

 Numerical errors in solving Ax=b are amplified in the solution 

by the condition number

 Estimation of condition number: from eigenvalues: divide 

maximum eigenvalue by the minimum eigenvalue or 

 (A) = max/min

 For singular matrices, (A) = 

 Condition number improvement by scaling equations 

possible

 Example:



Roundoff Errors

 Floating point number presentation

 Mantissa 

 Exponent      7

 Problems occur when adding numbers of very different 

scales

 If a computation results in a number that is too big to be 

represented, an overflow is said to have occurred.

 If a number that is nonzero but too small to be 

represented is computed, an underflow results.

 Machine epsilon: smallest positive floating point number s 

such that fl(1+s)>1      (Homework to compute)



Sensitivity Analysis 

 Using perturbation analysis, show how stable the solution 

is for a particular matrix A and machine precision s.

 Condition number describes the matrix only

 Be careful with choice of single vs. double precision since time 

gain may end up causing major errors in result !



Least-Squares Problem

 To find an optimal solution to linear system of equations 

Ax=b that does not have to be square and it is desired to 

minimize the 2-norm of the residual

 n>m :  overdetermined system     (least-squares solution)

 n<m: underdetermined system     (minimum-norm solution)



Orthogonal Matrices

 An orthogonal matrix has its inverse the same as its 

transpose

 Determinant = 1

 Condition number = 1 (ideal)

 Orthogonal transformations preserve length

 Orthogonal transformations preserve angle

 Example: rotators and reflectors



QR Decomposition

 Any nxn matrix A can be decomposed as a product QR 

where Q is an orthogonal matrix and R is an upper 

triangular matrix 

 Solution of Ax=b is again straightforward:

 QRx=b

 Let Rx= y and solve Qy=b  (solution is simply y= QTb)

 Then solve triangular system    Rx=y as before

 Advantage of QR solution: excellent numerical stability

 Overdetermined case (A is nxm with n>m): QR 

decomposition is still possible with :



Singular Value Decomposition (SVD)

 Let A be an nxm nonzero matrix with rank r. Then A can 

be expressed as a product: 

 Where:

 U is an nxn orthogonal matrix

 V is an mxm orthogonal matrix 

  is an nxm diagonal matrix of singular values in the form:



Solution of Least Squares Using SVD

 Condition number can be shown to be equal to:

 In order to improve condition number, we can solve the 

equation after replacing the smallest singular values by 

zero until the condition number is low enough

 Regularization of the ill-conditioned provlem

 “Pseudo-inverse” or “Moore-Penrose generalized inverse”

 Highest numerical stability of all methods but O(n3)



Computational Complexity

 Cholesky's algorithm applied to an nxn matrix performs 

about n3/3 flops. 

 LU based decomposition applied to an nxn matrix 

performs about 2n3/3 flops. 

 Gaussian elimination applied to an nxn matrix performs 

about 2n3/3 flops. 

 QR decomposition: 2nm2-2m3/3 flops

 SVD has O(n3) flops 

 All are still too high for some problems

 Need to find other methods with lower complexity



Iterative Solution Methods

 Much less computations of O(n2)

 Steepest descent based methods 

 Conjugate gradient based methods



Steepest Descent Methods

 Looks for the error b-Ax and tries to remove this error 

in its direction



Conjugate Gradient (CG) Methods

 Removes the error in 

“mutually-orthogonal” 

directions

 Maximum n iterations needed to 

reach exact solution

 Better performance compared 

to steepest descent



Exercise

 Write a program to compute Machine Epsilon

 Look for Matlab functions that implement the topics 

discussed in this lecture

 Read help

 Implement code for steepest descent and conjugate 

gradient methods and compare results to SVD based 

solution (pseudo-inverse) using only a few iterations


