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Topics Today

» Projection-slice theorem

» Interlaced Fourier transform



Projection-Slice Theorem

» Also known as Central-Slice Theorem
» A property of the Fourier transform

» Relates the projection data in the spatial domain to the
frequency domain

» States that the |D Fourier transform of the projection of
an image at an angle 0 is equal to the slice of the 2D
Fourier transform at the same angle




Projection-Slice Theorem
y

2D
f(X:Y) | Fourier F (kx’ky)

Transform /€<
X
[
\

ID
Fourier

Transform Pe (k p)

ﬁ

bo(p)




Projection-Slice Theorem

» 2D Fourier transformation:
F (k0 k,) = [[ £ 0 y)-e 7 Vaxdy

» The slice of the 2D Fourier transform at k,=0 is given by:

and at k =0 is given by
F(k,,0) = Iq f(x, y)dy)_e—jZﬂkx.de



Projection-Slice Theorem

» For a general angle, the rotation property of the Fourier
transformation can be used to generalize the
mathematical result for a vertical projection to any angle
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Projection-Slice Theorem:
Application to CT

» The projection data can be shown to correspond to
radial sampling of the frequency domain

» It is not straightforward to numerically compute the
image from this frequency domain representation
Limitation of the DFT to uniform sampled data

» Interpolation can be used in the frequency domain to re-
grid the radial sampling to uniform sampling
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Projection-Slice Theorem:
Application to MRI

» Navigator echo motion estimation

Acquire a single k-space line in the middle to estimation linear
translation in this direction

» Early MRI reconstruction based on backprojection
algorithms



Interlaced Fourier Transform

» A special case of nonuniform Fourier transform




Interlaced Fourier Transform

» Mathematical formulation
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Interlaced Fourier Transform
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Shepp-Logan Phantom

» Numerical phantom used to simulate the human head to
evaluate reconstruction algorithms in computed
tomography

RECONSTRUCTING INTERIOR HEAD TISSUE
FROM X-RAY TRANSMISSIONS

e,

L. A. Shepp and B. F. Logan
Bell Laboratories
Murray Hill, New Jersey 07974




Shepp-Logan Phantom

TABLE 1
Ellipses Center Major Axis Minor Axis Theta Gray level

a (0,0) .69 .92 0 2
b (0,-0184) .6624 874 0 -.98
c (.22,0) . | .31 -18° -.02
d (-.22,0) .16 A1 18° -.02
e (0,.35) 23 .25 0 .01
f (0,.1) .0l6 .046 0 .01

(0,-.1) . 045 . 046 J .02
h (-.08,-.605) .0b6 .023 0 .01
i (0,-.605) .023 .023 0 .01
J (.06,-.605) .023 .046 0 .01




Shepp-Logan Phantom: 3D

Table 1: 3D Shepp-Logan Phantom Specification for MRI
Ellipsoid Center (r,) Half-Axis Angle Spin Portion Tissue
(2) x y z a b ¢ ] Density | Subtracted Type
1* 0 0 0 0.72 0.95 0.93 0 0.8 None Scalp
2 0 0 0 0.69 0.92 0.9 0 0.12 [13] 2[Prop[1]] Bone &
Marrow
3% 0 | -0.0184 0 0.6624 | 0.874 (.88 0 0.98 [13] | 3[Prop[2]| CSF
. 0 -0.0184 0 0.6524 | 0.864 0.87 0 0.745 [14] | 4[Prop[3]] [ Gray Marter
5 -().22 0 -0.25 0.41 0.16 0.21 -720 0.98 5[Prop[4]] CSF
6 0.22 0 -0.25 0.31 0.11 0.22 720 0.98 6[Prop(4]] CSF
7 0 0.35 -0.25 0.21 0.25 0.35 0 0.617 [14] | 7[Prop[4]] White
Matter
8 0 0.1 -0.25 | 0.046 | 0.046 | 0.046 0 0.95 [6] 8[Prop[4}] Tumor
9 008 | -0.605 [ 025 | 0.046 | 0.023 | 0.02 0 0.95 9[Prop[4]] Tumor
10 0.06 [ -0.605 | -0.25 | 0.046 | 0.023 0.02 -90° 0.95 10[Prop|4]] Tumor
11 0 -0.1 -0.25 | 0046 | 0.046 [ 0.046 0 0.95 11{Prop|4]] Tumor
12 0 -0.605 | -0.25 | 0.023 | 0.023 | 0.023 0 0.95 12[Prop|4]] ‘Tumor
134* 0.06 | -0.105 | 0.0625 | 0.056 0.04 0.1 -90° 0.93 [6] | 13[Prop[4]] Tumor
14+ 0 0.1 0.625 | 0056 | 0056 | 0.1 0 0.98 14[Prop[4]] CSF
15+t 0.56 -0.4 -0.25 0.2 0.03 0.1 700 0.85 [15] Not Used Blood Clot
* Regions that were not in original Shepp-Logan (S-L) phantom, ** Slightly modified from original S-L phantom, 3D
phantom only, 11 Optional region for original S-L. phantom, not used herein. Portion subtracted: e.g., 2[Prop[1]] means
we subtract an ellipsoid with Ellipsoid 2’s geometry (center and dimensions) but Ellipsoid 1's MR properties (relaxation
and spin densiry). Scalp spin density is based on muscle/far water content since skin warer content 1s highly variable.
Tumor spin density is based on its x-rav attenuation coefficient [6].




Shepp-Logan Phantom: k-Space

» Using the known Fourier transformation of the Shepp-
Logan phantom components (circles and ellipses), one can
generate the analytical form of its Fourier transformation

Can be sampled arbitrarily to generate uniformly or
nonuniformly sampled data for close to real data generation

Applications include radial sampling (e.g., CT and MRI), spiral
and random sampling (MRI).

» This will be the standard for all evaluation procedures of
image reconstruction methods.



Simulation of Medical Image Artifacts

» Motion artifacts in MRl and CT

Different parts of k-space correspond to different subject
positions

Can be simulated using Shepp-Logan phantom
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Exercise

» Write a program to verify the projection-slice theorem
using a simple 2D phantom (e.g., a basic shape like a
square).

» Perform interlaced sampling on a function of your choice

with known analytical Fourier transform and verify the
interlaced Fourier transform theorem.

» Write a Matlab program to implement the analytical
Shepp-Logan phantom and test it using sampling on a
uniform grid.



