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Kadah’s Method

 Algebraic Solution

 Iterative reconstruction method that provides an optimal 
solution in the least-squares sense

 Based on a practical imaging model

 Progressive reconstruction capability

 Simple mechanism to control trade-off between accuracy and 
speed

 Embedded inhomogeneity correction and spatial domain 
constraints



Disadvantages of Previous Methods

 Reconstructed images do not represent optimality in any 

sense

 Variation of performance with form of k-space trajectory

 Lack of explicit methodology to trade-off accuracy and 

speed of reconstruction

 Not possible to progressively improve the accuracy of 

reconstruction

 Not possible to embed field inhomogeneity correction or 

constraints into the reconstruction



Theory

 Assume a piecewise constant spatial domain representing 

display using pixels

 Image composed of pixel each of uniform intensity

 Image can be represented by a sum of 2D RECT functions

 Assume spatial domain to be compact

 Field of view is always finite in length 

 The image can be expressed in terms of gate functions as,
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Theory

 Applying continuous Fourier transform,

 Hence, 

 This can be expressed in the form of a linear system as

 A matrix is ~N2N2 and complex-valued
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Theory

 Observation:  A matrix is ~N2xN2 and complex-valued

 Solve a16384x16384 linear system to get a 128x128 image

 Very difficult to solve in practice because of size



Idea

 Problem: A matrix is dense and computational 

complexity of solution is prohibitive 

 Solution Strategy: Try to make the A matrix sparse by 

seeking a compact representation of rows in terms of 

suitable basis functions 

 Observation: applying a 1-D Fourier transformation to 

the rows of A matrix results in energy concentration in 

only a few elements 



Methods

 Multiply the rows of the system matrix by the NxM-point 

discrete Fourier transform matrix H in the following 

form:



Methods

 How to multiply H without changing the linear system?

 Row energy compacting transformation converts the system into a 
sparse linear system as follows:

 To convert to sparse form, only a percentage  of kernel 
energy in each row is retained

 The only parameter in the new method

 Correlates directly to both image quality and computational 
complexity

 Sparse matrix techniques are used to store and manipulate the 
new linear system

 Since the linear system is sparse, iterative methods such as conjugate 
gradient can be used to solve the system with very low complexity
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Methods



Results

 256x256 

Analytical 

Shepp-Logan 

Phantom

(Radial sampling)



Results

 256x256 Real data from a resolution phantom at 3T from 

a Siemens Magnetom Trio system using a spiral trajectory



Results



Discussion

 Full control over the accuracy versus complexity trade-off 

through  selection

 Computational complexity is comparable to conventional 

gridding with small kernel

 O(g()L) per CGM step, where g() is the average # of 

elements/row, L=# of acquired k-space samples

 Average 4.9 elements/row to retain 92% of energy

 Progressive reconstruction is possible

 Add more iterations to process

 Use a different reconstruction table with higher 



Exercise

 Verify the energy compactness transformation and 

generate Figure 2 (c) for any trajectory you prefer. [1 

Point]

 Assuming that we have a rectilinear sampling instead of 

the nonuniform sampling in this paper, how do you expect 

the linear system to look like? [1 Points]

 Assume that we are constructing an NxN image, compute 

the exact number of computation (not an order or 

computation) detailing the list of computations in each 

step in the implementation. [1 Point] 


