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An image reconstruction technique for echo-planar imaging is proposed. This technique 
combines odd and even numbered echo signals. It is thus possible to reduce the frequency 
of the time-modulated gradient used in echo-planar imaging by 5070, and to reduce its 
amplitude by almost 50% for sinusoidal gradient modulation. 0 1987 Academic Press, Inc. 

INTRODUCTION 

Up to now, various methods have been proposed for spatial mapping of a spin 
distribution using NMR. Several of these methods use field gradient time modulation 
for high-speed data acquisition. One such method is the well-known echo-planar im- 
aging ( I ,  2). With this method, spin distributions can be imaged with a single spin- 
echo train induced by one 90" pulse application. However, the method imposes strin- 
gent requirements on the amplitudes and frequencies of the time-modulated gradient 
when the image matrix becomes large. 

This paper proposes an image reconstruction technique that allows the combined 
use of odd and even numbered spin echoes. These echoes correspond to echoes induced 
by the positive and negative applications of the periodic gradient, respectively. With 
the proposed reconstruction technique, the amplitude and frequency of the time- 
modulated gradient can be reduced by up to 50% without sacrificing one-shot imaging 
capability. 

METHOD 

In echo-planar imaging with square-wave gradient modulation, the trajectory of 
data points in k space (spatial frequency domain) is expressed by a zig-zag line (3,  4 ) ,  
as shown in Fig. la. Here, it is assumed that the time-modulated gradient is applied 
in the x direction and the stationary gradient is applied in the y direction. k, is the 
spatial frequency for the x direction and k, is that for the y direction. Let us denote 
data arrays obtained from odd and even numbered echoes as Sp(k,, k,) and 
SN(k,, ky), respectively. Note that the data points marked by (0) in Fig. la represent 
Sp(k,, k,) and data points marked by (0) represent SN(k,, k,). Ak, is the minimum 
distance of these data arrays in the ky direction. 

A cross section of the spatial frequency distribution at a specific k, (indicated by 
the broken line in Fig. la) is shown in Fig. lb. Sampling points within each of the 
two sets marked by (0) and (0) are equal intervals apart; the interval is equal to Ak,. 
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FIG. 1. (a) Typical k space trajectory for echo-planar imaging. Data points marked by (0) and (@) are 
obtained when the x gradient is positive and negative, respectively. (b) Cross section of spatial frequency 
distribution at a specific value of kx (indicated by the broken line in (a)). 

These sets of sampling points are separated by ~ ( k , ) .  In square-wave gradient modu- 
lation, ~ ( k , )  is given by 

nck,)=ak*j 2 1 -$). 
Here, k,”” is the maximum value of k, in k space. The proposed technique can re- 
construct images when Ak, is set at twice the requirement from the sampling theorem, 
i.e., when Ak, is set at 4s/L,, where L, is the width of the field of view in the y 
direction. 

Let us define gp(k,, y )  and gN(kx, y )  as the Fourier transforms of Sp(kx, k,) and 
SN(kx, k,) with respect to k,. gp(kx,  y )  at a specific value of k, is schematically depicted 
in Fig. 2a. As shown in this figure, gp(kx ,  y )  contains aliasing because Ak, exceeds the 
requirement from the sampling theorem. However, applying the theory of interlaced 
sampling (3, one can remove aliasing by using gp(kx ,  y )  and gN(kx,  y) .  That is, to 
obtain an aliasing-free image, it is necessary to calculate 

- e K 2 * l t ( b )  ei)n(kx) 

g ( k X ,  Y )  = 1 - e x 2 z i t ( k x ) g p ( k X 1  Y )  + 1 - eK2ziH/Qg.”(kX> Y ) ,  P I  

where [(k,) = v(k,)/Ak,. In Eq. [2], K = -1 for y 3 0 and +1 for y < 0. g(k,, y )  at the 
same k, as that in Fig. 2a is shown in Fig. 2b. 

Let us also calculate h(k,, y):  

where K = -1 for y 3 0, and + I  for y < 0. Figure 2c shows h(k,, y )  at the same k, as 
that in Figs. 2a and 2b. 

As suggested in Figs. 2b and 2c, an aliasing-free Fourier transform G(k,, y )  can be 
obtained for -L,/2 G y S L,/2 through the following combination, 

G(k,, y )  = h( k,, y - 2) - L, < y s  L -2 
4 2 ‘  [41 
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FIG. 2. (a) gp(kx, y )  at a specific k,. (b) g(k,, y )  at same k, as in (a). (c) h(k,, y )  at same k, as in (a). (d) 
G(k,, y )  at same k, as in (a), (b), and (c). 

G(k,, y )  at the same k, as that in Figs. 2a-2c is shown in Fig. 2d. The final image can 
be reconstructed by Fourier transforming G(k,, y )  with respect to k,. 

This technique can be applied to echo-planar imaging using sinusoidal gradient 
modulation with no modification except using 

v(k,) = ak, [ 1 -;arc 2 sin( $)I, 
2 [51 

instead of using Eq. [ 11. 

COMPUTER SIMULATION 

Computer simulation has been performed to demonstrate the effectiveness of this 
method. The phantom pattern generated in computer simulation is shown in Fig. 3. 
Assuming square-wave modulation, one calculates Sp(k,, k,) and SN(k,, ky) with 128 
discrete k, values and 64 discrete ky values. Here, Ak, was set at 4afL,, twice the 

FIG. 3. Phantom pattern generated in computer simulation. 
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FIG. 4. Image obtained by Fourier transforming S,(k,, k,) with respect to k, and k,. Image consists of 
128 X 64 pixels. 

requirement from the sampling theorem. The image obtained through two-dimensional 
Fourier transform of Sp(kx, k,) with respect to k, and ky is shown in Fig. 4. This image 
consists of 128 X 64 pixels. The image contains aliasing because Ak, does not satisfy 
the sampling theorem's requirement. 

Figure 5a shows the image obtained by Fourier transforming g(k,, y )  with respect 
to k,. The image obtained from h(k,, y )  is shown in Fig. 5b. These figures indicate 
that the technique presented here makes it possible to separate the image from its 
overlapped replicas. The Fourier transform of G(k,, y )  with respect to k, is shown in 
Fig. 6. This image consists of 128 X 128 pixels. This figure clearly shows that the 
image free from aliasing can be obtained with this technique. 

NOISE INCREASE AND AMPLITUDE REDUCTION OF MODULATED GRADIENT 

One drawback in the proposed reconstruction technique is an increase in noise in 
the final reconstructed image. This noise increase is caused by the complex weighting 
factor, 1/( 1 - exp[~2~i[(k,)]}, contained on the right-hand sides of Eqs. [2] and [3]. 

Let us define the absolute values of the weighting factor as W(k,), i.e., W(k,) = 1/ 
11 - exp[~2~ri[(k,)](. W(k,) is shown as a function of k,.k,""" in Fig. 7. W(kJ  is less 
than 1 when kJk,""" < 0.7 for square-wave modulation. It is also less than 1 when 
kJk,""" < 0.85 for sinusoidal modulation. Thus, noise increase in an image can be 
avoided by reconstructing the image using only the data with k, less than rk,. r is, 
for example, 0.7 for square-wave modulation and 0.85 for sinusoidal modulation. 

Noise increase as a function of r can be more accurately estimated as follows. The 
noise rms of an image reconstructed using the conventional method is denoted as go. 

In conventional reconstruction, gp(kx, y )  and gN(-kx,  y )  are separately Fourier trans- 
formed with respect to k,, and added to produce the final image. The noise rms values 
of gp(kx, y )  and gN(k,, y )  are assumed to be equal and are denoted as uc. It is also 
assumed that the noise contained in gp(k,, y )  has no correlation with that contained 
in gN(kx, y). Thus, go can be calculated from 

a b 

FIG. 5 .  (a) lmage obtained by Fourier transforming g(k,, y) with respect to k,. (b) Image obtained by 
Fourier transforming h(k,, y) with respect to k,. 



COMMUNICATIONS 489 

FIG. 6. Image obtained by Fourier transforming G(k,, y )  with respect to k,. Image consists of 128 X 128 
pixels. 

ug = 2 J - u$dkx = 4k,ma"&. 
-hp" 

The amplitude of the periodic gradient used in conventional image reconstruction is 
denoted as GZ, and the gradient period as 4T,. With y defined as the gyromagnetic 
ratio, k,"" is equal to y G," T, in this case. 

The rms value of the noise contained in G(k,, y )  is denoted as uG. The noise rms 
values for gp(kx, y )  and gN(kx, y )  are denoted as uD. Then, the equation & 
= 2W2(kX)& is derived using Eqs. [2] and [3]. First square-wave gradient modulation 
is considered. When the data between - r k Y  and r k y  are used for image recon- 
struction, the noise rms, 8, of the final image reconstructed with the proposed technique 
is given by 

2 1 SQUARE WAVE 

0 
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k, 

FIG. 7. Absolute values of the complex weighting factor, W(k,), as a function of kJk,""". 
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FIG. 8. Noise increase u/u0 as a function of I?. 

Since the amplitude of the periodic gradient is denoted as GC in this case, k y  is 
equal to yGC(2Tw). Here, the period of the x gradient must be set at 8Tw. Therefore, 
we can finally obtain from Eqs. [6] and [7] 

In deriving Eq. [8], it is assumed that yG,"Tw = ryG?(2Tw), and ( U C / L T ~ ) ~  = G$/ 
Gf = 2I'. For sinusoidal gradient modulation, using Eq. [5], we can derive 

111 5 = (:logkan{:[ 1 +-arc sin(r) sin(I') . [9] 2 
uo 217 7r 

Noise increase caused by the proposed reconstruction technique can be evaluated 
using Eqs. [8] and [9]. The calculated results of a/ao as a function of I' are shown in 
Fig. 8. This figure indicates that when r is less than 0.95, the ratio a/ao is less than 1 
for square-wave modulation. Noise increase is shown to be almost negligible for si- 
nusoidal modulation except when I' = 1. 

Since only the data between -rk,maX and I'k,maX are used for image reconstruction, 
the amplitude of the x gradient must be increased by l/r to maintain the same spatial 
resolution. Accordingly, the proposed reconstruction cannot reduce the periodic gra- 
dient amplitude to exactly 50% of that required for conventional reconstruction. This 
amplitude reduction of the periodic gradient attained by the proposed reconstruction 
technique can be evaluated by Gf/Gz = 1/(2I'). Thus, it is concluded that the proposed 
reconstruction can reduce the periodic gradient amplitude required for conventional 
reconstruction to 53% for square-wave modulation without increasing image noise, 
and to almost 50% for sinusoidal modulation. 

CONCLUSIONS 

A new image reconstruction technique for echo-planar imaging has been proposed. 
This technique permits reducing the frequency of the time-modulated gradient by 
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FIG. 9. An example of k trajectories for data obtained by fast Fourier imaging. Four trajectories are 
combined in this example. Data points marked by (0) and (0) are obtained when the x gradient is positive 
atld negative, respectively. 

50%. Analysis of the noise caused by this technique shows that the amplitude of the 
time-modulated gradient can also be reduced by approximately 53% for square-wave 
modulation and by almost 50% for sinusoidal modulation, without increasing noise 
in the reconstructed image. 

The k trajectories of data measured by fast Fourier imaging proposed by Van Uijen 
et al. (6) are shown in Fig. 9. Multiple trajectories are combined to reconstruct an 
image by this method. It is clear in this figure that the proposed technique is applicable 
to this imaging method. In this imaging method, the speed-up factor q is defined as q 
= M/N, where N is the number of measurements needed for image formation, and 
M is the size of the image matrix. It is easy to show that the proposed technique can 
nearly double the speed-up factor without increasing image noise. 

Finally, high-speed spectroscopic imaging by gradient time modulation has recently 
been proposed (7, 8). The modulation frequency limits the spectral bandwidth in this 
spectroscopic imaging. Thus, stringent requirements are also imposed on gradient 
modulation if the method is applied to nuclei with large chemical-shift dispersions, 
such as 31P, at higher field strengths. The reconstruction technique presented in this 
paper is also applicable to such spectroscopic imaging. 
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