Selected Topics – Embedded Systems November 2011 Midterm #1

Solve As Much As You Can - Maximum Grade:100 points

Part 1. Answer the following questions by marking the best answer among the choices given: [3 points each]

1. Using a 3.3V microcontroller, a GPIO pin can provide high current output using ...

- a. A push-pull output mode
- b. An open-drain output mode with internal weak pull-ups
- c. An open-drain output mode with external pull-ups. (*)
- 2. Using a 3.3V microcontroller, one can make a GPIO work as an input pin using ...
 - a. An open-drain output mode and a pull-up resistor
 - b. A push-pull output mode and an amplifier at the output of the pin
 - c. A push-pull output mode and an internal weak pull-up (*)
- 3. For multiple microcontrollers to be synchronized, a clock source for C8051F020 based on ... is used.
 - a. RC oscillator
 - b. CMOS clock (*)
 - c. Internal clock
- 4. Accessing C8051F020 memory location 020H using indirect addressing mode refers to ...
 - a. Special function register
 - b. General purpose data RAM memory address (*)
 - c. Immediate value
- 5. Using a 3.3V microcontroller, a GPIO pin can provide TTL-compatible output levels using ...
 - a. A push-pull output mode (*)
 - b. A push-pull output mode with internal weak pull-ups
 - c. An open-drain output mode
- 6. We can toggle bit 3 of P1 by the following C instruction ...
 - a. P1= P1 ^ 008H
 - b. P1= P1 & 0F7H
 - c. P1.3= ~P1.3 (*)
- 7. GPIO pins can be used for bidirectional data transfer when they are configured as ...
 - a. Open-drain mode with internal weak pull-ups (*)
 - b. Open-drain mode with external pull-ups
 - c. Push-pull mode
- 8. When the external crystal oscillator is invalid for a long period of time, the microcontroller ...
 - a. Switches automatically to internal oscillator
 - b. Can be configured to reset (*)
 - c. Causes a flag to be raised for the program to repair the problem
- 9. The instruction to be used to transfer data from program memory is ...
 - a. MOV
 - b. MOVX
 - c. MOVC (*)
- 10. C8051F020 has a ... architecture.
 - a. Harvard
 - b. Von Neumann
 - c. Mixed

Part 2. Mark the following statement as either True (T) or False (F): [1 Point each]

- 11. C8051F020 is a mixed-signal microcontroller because it can handle analog and digital data. (F)
- 12. The C8051F020 instruction MOV can be used with indirect addressing. (T)
- 13. Microcontroller external clock configuration must perform a check on the external clock validity (T)
- 14. Division must work only in register addressing mode. (T)
- 15. Using bit to declare a bit variable is valid only for global variables (F)
- 16. 8-bit MCUs are well-suited for low-power applications that use batteries. (T)
- 17. One can declare a bit-addressable variable in C language programming for microcontrollers (F)
- 18. The operands of a logical operation must be Boolean. (F)
- 19. Some registers in8-bit microcontrollers are 16-bit wide. (T)
- 20. The size of the bit-addressable region of the data memory allows for 256 bit variables. (F)

Part 3. Denote the following C8051F020 microcontroller instructions as either being true (T) or false (F) assembly instructions: [1 point each]

21.	MOV #70H, 060H (F)
22.	MOV @R0, A (T)
23.	ADD A, #030H (T)
24.	RLC 040H (F)
25.	DJNZ R7, 70H (T)
26.	CPL P2.4 (T)
27.	MAIN EQU 070H (F)
28.	РОР 070н (Т)
29.	XCH A, #05АН (F)
30.	DA A (F)
31.	CJNE R6, 70H (F)
32.	CPL P1^3 (F)
33.	SETB C (T)
34.	INC @R1 (T)
35.	MUL AB (T)

Part 4. Determine the number of bytes required to represent the following
instructions in assembly: [2 points each]

36. CLR A (1) 37. RR A (1) A,R4 (1) 38. MOV 39. LJMP MAIN (3) 40. ACALL ARRAY (2)41. JNZ Loop (2) 42. CLR P1.1 (2) P2,#40h (3) 43. XRL 44. CPL A (1) 45. RLC A (1)

Part 5. Compute the output of the following operations in a C Language program for a C8051F020 device: [2 points each]

46. 47. 48.	00100100b > 10100001b !(00100100b 00000001b) (0F0H & 080H) >= 0	(ans: (ans: (ans:	FALSE) FALSE) TRUE)
49.	021H % 02H	(ans:	1)
50.	1>>2	(ans:	0)
51.	OFOH + OOAH	(ans:	OFAH)
52.	!(00100100b & 0000001b)	(ans:	TRUE)
53.	(OFOH - 080H) == 0	(ans:	FALSE)
54.	0A3H % 08H	(ans:	3)
55.	040H>>2	(ans:	010H)

Q6. Write C8051F020 assembly code lines to do the following: [4 Points each]

c. Configuration of external crystal oscillator working at 1 MHz.

d. Generation of a periodic binary signal with duty cycle of 30% from pin P1.6.

e. Transfer the contents of memory location 050H to accumulator A using 2 different methods.

Answers: To Be Discussed in LAB

Part 7. [10 points] Consider the simple C8051F020 microcontroller-based temperature control shown below. The user selects the value of the temperature and puts it as an 8-bit INPUT that is connected to PORT 1 while the temperature measured is converted to an 8-bit digital value and connected to PORT 2. The microcontroller can turn the heater ON by setting pin P2.3 and OFF by resetting the same pin. Design a project that would enable the ON/OFF control of the heater to adjust the temperature to exactly the value read by INPUT. Control should work as follows:

- 1. Read INPUT
- 2. Read ADC
- 3. Compare INPUT to ADC
- 4. Turn Heater ON if INPUT > ADC and wait for 1 s
- 5. Turn Heater OFF if INPUT < ADC

Answer: To Be Discussed in LAB