Intermediate Physics for Medicine and Biology - Chapter 1

Professor Yasser M. Kadah

Web: http://ymk.k-space.org/courses.htm

Biological Object Sizes

- a) A paramecium
- b) An alveolus
- c) A cardiac cell
- d) Red blood cells
- e) Escherichia coli bacteria

Biological Object Sizes

- a) Human immunodeficiency virus (HIV)
- b) Hemoglobin molecules
 - Cell membrane
 - DNA molecule
 - Glucose molecules

Approximate Sizes of Biological Objects

Object	Size
Protozoa	$100~\mu{ m m}$
Cells	$10~\mu{ m m}$
Bacteria	$1~\mu{ m m}$
Viruses	100 nm
Macromolecules	$10 \ \mathrm{nm}$
Molecules	$1 \mathrm{nm}$
Atoms	$100 \mathrm{\ pm}$

Distances and Sizes

- Valuable skill in physics: ability to make order-of-magnitude estimates
- Example: Calculate number of cells in body
 - \circ Cells ~ 10 μm in size → volume ~ (10 μm)³
 - Adult ~ 2 m tall and 0.3 m wide

 \rightarrow volume ~ 2 × 0.3 × 0.3 = 0.18 m³

- Assume body is made entirely of cells
- Number of cells = $0.18/1e^{-15} \sim 2 \times 10^{14}$

Forces and Translational Equilibrium

- Force defined by Newton's second law F = ma
- Translational equilibrium:
- Equilibrium:
 - remains at rest
 - move at constant speed

Rotational Equilibrium

Rotational equilibrium if,

$$\sum_{i} \tau_{i} = 0$$

Example: Achilles Tendon

 Apply both translational and rotational equilibrium conditions

Example: Forces on the Hip

Example: Use of a Cane

Work

Work done by a force F_x as it moves from x₁ to x₂

$$W = \int_{x1}^{x2} F_x(x) dx$$

- Area under curve
- Equal to increase in K.E.

Stress and Strain

Normal stress: tensile/compressive

• *E*: Young's modulus

Force parallel to surface

$$s_s = \frac{F}{S} = G\varepsilon_s = G\frac{\delta}{h}$$

• *G*: shear modulus

FIGURE 1.23. Shear stress and strain.

Equilibrium:

• Object immersed in fluid $F = (\rho_{fluid} - \rho) \cdot g \cdot V$

Example: Terrestrial animals
 Very small *buoyancy* because

- Example: Aquatic animals
 - Very small *F* because

$$|
ho_{\it fluid} pprox
ho|$$

"Weightless" in water

Pressure on a fluid

$$\frac{\Delta V}{V} = -\kappa \cdot \Delta p$$

- Compressibility κ negligible in many cases (e.g., $\kappa = 5 \times 10^{-10}$ Pa⁻¹ for water)
- Important for such phenomena as ultrasound transmission

Viscosity

Laminar flow of a Newtonian fluid

Pressure-Volume Work

Example: Respiration Work

Circulatory System

Veins, venules, and venous sinuses---64%

Turbulent Flow and Reynolds Number

Turbulent flow when Reynolds number is more than a few thousands

$$N_R = \frac{LV\rho}{\eta}$$

Problem Assignment

Posted on class web site

Web: http://ymk.k-space.org/courses.htm