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Introduction 

 Is it possible to use classical mechanics to 

describe systems of many particles ? 

 Example: particles in 1 mm3 of blood 

 Compute translational motion in 3D 

 

 

 6 multiplications + 6 additions / particle 

 For 1019 particle, 1020 operations required/interval 

 108 s (3 years) on a 1G operations/s computer !! 
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Statistical Mechanics 

 Do not care about individual molecules 

 Impossible to trace practically 

 Average macroscopic properties over 
many particles are what we need 

 Such properties are studied under 
statistical physics / statistical mechanics 

 e.g., Pressure, Temperature, etc. 

 Average and probability distribution  



Gas Molecules in a Box 

 Total number of molecules = N 

 Box with imaginary partition 

 Particles in left half = n 

 P(n) can be computed from an 

ensemble of boxes 

 



Gas Molecules in a Box 

 Example: N=1 

 P(0)= 0.5 , P(1)= 0.5 

 Example: N=2 

 



Gas Molecules in a Box 

 Example: N=3 



Gas Molecules in a Box 

 Histogram representation 



Gas Molecules in a Box 

 General case: binomial distribution 

 Assume a general box partitioning into 

two volumes v (left) and v’ (right) such 

that p=v/V, q= v’/V, then p+q=1 

 Probability of n particles in volume v 

given by 
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Microstates and 

Macrostates 

 Microstates: all information about a 
system 

 Position and velocity of all molecules 

 Macrostates: average properties 

 Number of molecules in each half 

 Example: Toys in a room 

 Microstate: position of every toy 

 Macrostate: “picked-up” or “mess” 

 



Gas Box Example 

 Partition in between 

 

 Partition suddenly removed 

 Many more microstates available 

 Improbable to remain all on left  

 Equilibium: half on each side  

 Macroscopic states not changing 

with time 

 Most random, most probable 

 

 



Microstates 

 Energy levels defined by a set of 
quantum numbers = 3N (in 3D) 

 Discrete levels 

 Total number of quantum numbers 
required to specify state of all particles 
is called degrees of freedom (f) 

 Microstate: specified if all quantum 
numbers for all particles are specified 

 



First Law of 

Thermodynamics 

 Total energy U = sum of particle 

energies 
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Exchange of Energy 

 Exachange forms: Work and Heat 

WQU 

No work – Heat added Work done – No heat flow 

(Adiabatic change) 
No work – No heat flow 



Exchange of Energy 

 Pure heat flow involves a change in the 

average number of particles in each level 

 No change in positions of levels 

 Work involves a change in the macroscopic 

parameters 

 Change in positions of some levels 

 Change in average populations in levels 

 General case: both heat flow and work 

 Sum of changes due to both 



Specifying Microstates and 

Macrostates 

 Microstates 

 quantum numbers of each particle in the 

system 

 Macrostates 

 All of external parameters 

 Total energy of the system 



Specifying Microstates and 

Macrostates 

 Statistical physics: ensemble of identical 
systems 

 At some instant of time, “freeze” ensemble 

 

 

 “Unfreeze” then wait and repeat “freeze” 

 Edgodicity: 

 Equivalence of time and ensemble averages 

ensemble in the systems ofnumber  Total

 microstatein  systems ofNumber 
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Basic Postulates 

1. If an isolated system is found with 
equal probability in each one of its 
accessible microstates, it is in 
equilibrium 

 Converse is also true 

2. If it is not in equilibrium, it tends to 
change with time until it is in 
equilibrium 

 Equilibrium is the most random, most 
probably state. 



Thermal Equilibrium 

 Idealization: system that does not interact 

with surroundings 

 Adiabatic walls can never be realized 

 Much can be learned by considering two 

systems that can exchange heat, work or 

particles but isolated from the rest of the 

universe 

 One of them is our system and the other can be 

taken to be the rest of the universe 



Thermal Equilibrium 

 Consider only heat flow 

 Total system A* 

 Number of particles N*= N+N’ 

 Total energy U*= U+U’ 

 Two systems can exchange heat 

 U and U’ may change as long as U*= const 

 Barrier prevents exchange of particles or 
work 
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        V 

        U 

         
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        N’ 

        V’ 

        U’ 

        ’ 



Thermal Equilibrium 

 Number of microstates 

 *(U)= (U) × ’(U) 

 Probability of microstate 

 P(U)= *(U) / *tot  

 *tot= U *(U)  

 Example: system of 2 particles in A and A’ 

 Total energy U*=10u 

 Possible energy levels for particles = 1u, 2u, .. 
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Thermal Equilibrium 

 Ex: U= 2u → U’= U*-U= 10u-2u= 8u 

 Possible A microstates: (1u,1u) 

 (U)= 1 

 Possible A’ microstates: (1u,7u), (2u,6u), 

(3u,5u), (4u,4u), (5u,3u), (6u,2u), (7u,1u) 

  ’(U)= 7 

 *(U)= (U) × ’(U)= 7 

 

 



Thermal Equilibrium 



Thermal Equilibrium 

 Most probable value of U has max P(U) 
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Thermal Equilibrium 

 Define a quantities  and ’ with units 
of energy such that  

 

 

 Equilibrium at  =’ , 
 related to absolute temperature  

 kB= Boltzmann const= 1.38×10-23 J K-1 

 T= absolute temperature K 

 

'

'

'

1

'

1
  and  

11

dU

d

dU

d 











TkB



Entropy 

 Develop a condition for thermal 

equilibrium 

 ln * = ln  + ln ’ 

 

 

 Define entropy S as 
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Entropy 

 Feature #1: temperature definition 

 

 

 Feature #2: entropy = sum of entropies 

 

 Feature #3: max entropy at equilibrium 
 Follows from max * at equilibrium 

 Feature #4: entropy change related to heat 
flow 
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The Boltzmann Factor 

 Two isolated systems 

 In thermal contact  

 Let system A be a single particle 

 Let system A’ be a large system 

 “reservoir” 

 Transfer of energy → Number of 
microstates in A and A’ change 

 Ratio of number of states  G  
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The Boltzmann Factor 

 Consider system A has two different 

energies Ur and Us 

 Reservoir A’ is very large 

 Its temperature T’ remains the same 

 Has many energy levels 

 Recall that P(U)= *(U) / *tot  

 Recall that   )(')()( ** UUUU 



The Boltzmann Factor 

 Then, 

 

 

 Let 
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The Boltzmann Factor 

 Recall that  

 

 

 Equilibrium at  =’ , 

 related to absolute temperature  

 kB= Boltzmann const= 1.38×10-23 J K-1 

 T= absolute temperature K 

 Consider solving the above equation for ’  

 T’ is constant 
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The Boltzmann Factor 

 

 

 Then, 

 

 Hence, at equilibrium T= T’ 
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The Boltzmann Factor 

 R is called the “Boltzmann factor” 

 Factor by which the number of 

microstates in the reservoir decreases 

when the reservoir gives up energy Us-Ur 

 Relative probability of finding system A 

with energy Ur or Us is given by 
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The Boltzmann Factor 

 G factor: “density of states factor” 

 Property of the system 

 Ex: single atom with discrete energy 

levels, G=1 

 Degeneracy: G may be different 



Example 1: Nernst Equation 

 Concentration of ions on the two sides 

of a semi-permeable membrane and 

its relation to the voltage across the 

membrane 
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Nernst Equation 

 U= Ek+Ep (Ek is the same) 

 Potential energy is Ep= zev 

 Then,  

 

 Since R=NAKB and F=NAe  

Nernst 

Equation                          
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Example 2: Pressure 

variation in the atmosphere 

 Atmospheric pressure decreases with 

altitude 

 Potential energy: gravitational =m×g×y 
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Problem Assignment 

 Posted on class web site  

 
Web: http://ymk.k-space.org/courses.htm 

 


