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Introduction

= |s it possible to use classical mechanics to
describe systems of many particles ?

= Example: particles in 1 mm? of blood
o Compute translational motion in 3D

v.(t+A) =v.() + FAt/m |, (I=X,Y,2)

o 6 multiplications + 6 additions / particle
o For 10%° particle, 10%° operations required/interval
o 108 s (3 years) on a 1G operations/s computer !!



[Statistical Mechanics

Do not care about individual molecules
o Impossible to trace practically

Average macroscopic properties over
many particles are what we need

Such properties are studied under
statistical physics / statistical mechanics
o e.d., Pressure, Temperature, etc.

o Average and probability distribution



[Gas Molecules In a Box

Total number of molecules = N

Box with imaginary partition |
Particles in left half = n |

P(n) can be computed from an
ensemble of boxes
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[Gas Molecules In a Box

Example: N=1

P(0)= 0.5, P(1)= 0.5

Example: N=2
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Gas Molecules In a Box

Example: N=3

Molecule 1 Molecule 2 Molecule 3 n P(n:3)
R R R 0 S
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Gas Molecules In a Box

Histogram representation
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FIGURE 3.2. Histograms of P (n; N) for different values of N.



[Gas Molecules In a Box

General case: binomial distribution

Assume a general box partitioning into
two volumes v (left) and v’ (right) such
that p=v/V, g= v/V, then p+q=1

Probabillity of n particles in volume v

given by

% v’

N!

PN P) = L N p"(1—p)" "




Microstates and
[I\/Iacrostates

Microstates: all iInformation about a
system

o Position and velocity of all molecules

Macrostates: average properties
o Number of molecules in each half

Example: Toys in a room 7
o Microstate: position of every toy
o Macrostate: “picked-up” or “mess”




Gas Box Example

= Partition in between

= Partition suddenly removed
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Many more microstates available
Improbable to remain all on left
Equilibium: half on each side

Macroscopic states not changing
with time

Most random, most probable
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[Microstates

Energy levels defined by a set of
guantum numbers = 3N (in 3D)

o Discrete levels
Total number of quantum numbers

required to specify state of all particles
IS called degrees of freedom (7)

Microstate. specified If all guantum
numbers for all particles are specified



|

First Law of
Thermodynamics

Total energy U = sum of particle
energies
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Exchange of Energy

Exachange forms: Work and Heat
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AU =Q-W

o — — @
. & — &
— o 0O — 000
000 - e

No work — Heat added

B

T / [P

. e -~ L — e e

_eee o060
o000

Work done — No heat flow
(Adiabatic change)




Exchange of Energy

= Pure heat flow involves a change in the
average number of particles in each level

o No change in positions of levels
= Work involves a change in the macroscopic
parameters
o Change In positions of some levels
o Change In average populations in levels

= General case: both heat flow and work
o Sum of changes due to both



Specifying Microstates and
[I\/Iacrostates
Microstates

o quantum numbers of each particle in the
system

Macrostates
o All of external parameters
o Total energy of the system



Specifying Microstates and
[I\/Iacrostates

Statistical physics: ensemble of identical
systems

At some instant of time, “freeze” ensemble

Number of systems in microstate |
Total number of systems in the ensemble

“Unfreeze” then wait and repeat “freeze”
Edgodicity:

o Equivalence of time and ensemble averages

P(microstate 1) =




[Basic Postulates

1. If an isolated system is found with
equal probabillity in each one of its
accessible microstates, it is in
equilibrium
o Converse is also true

2. If It Is not In equilibrium, It tends to
change with time until it is in
equilibrium
o Equilibrium Is the most random, most

probably state.



Thermal Equilibrium

|dealization: system that does not interact
with surroundings

o Adiabatic walls can never be realized

Much can be learned by considering two
systems that can exchange heat, work or

particles but isolated from the rest of the
universe

o One of them is our system and the other can be
taken to be the rest of the universe



[Thermal Equilibrium ]

= Consider only heat flow
= Total system A*

RE<Z

o C< Z

o Number of particles N*= N+N’
o Total energy U*= U+U’

= Two systems can exchange heat

o U and U may change as long as U*= const

o Barrier prevents exchange of particles or
work




[Thermal Equilibrium

A A .N
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Number of microstates ® v |eo v
o Q*U)= Q(U) x (V) ®o . —— o

Probability of microstate
o AU)=Q*U) [ Q%

0 Q%= ZU Q*(U)
Example: system of 2 particles in A and A’

o Total energy U*=10u
o Possible energy levels for particles = 1u, 2u, ..



[Thermal Equilibrium ]

= Ex: U=2u — U'=U*-U= 10u-2u= 8u
o Possible A microstates: (1u,lu)
o QU)=1

o Possible A’ microstates: (1u,7u), (2u,6u),
(3u,5u), (4u,4u), (5u,3u), (6u,2u), (7u,1lu)

o QU)=7
o Q*(U)=QU) x Q(U)=7



Thermal Equilibrium

System A System A’ System A*
U ) U’ Q Q*
2u 1 u 7 7
3u 2 Tu 0 12
4u 3 bu 5) 15
Hu 4 hu 4 16
bu D 4t 3 15
Tu 6 3u 2 12
U 7 2U 1 7

Qj:()t — 84




[Thermal Equilibrium

J)

Most probable value of U has max A
d d [QU)|] 1 dr.

— P(U) = — Q =
0PV e [Fan @ W=
Q' U)=QU)- QU -U)
dQ (U)=O:QQ'(1 dQ 1 dQ‘j
du ——\Qdu Q'dU’
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[Thermal Equilibrium

Define a quantities rand 7 with units

of energy such that
1 1 dQ 1 1 dQ
and —
' Q'dU’

r QduU
Equilibrium at =17,
o related to absolute temperature

T =KkKgT

k= Boltzmann const= 1.38x1023 J K-

7= absolute temperature K




[Entropy

Develop a condition for thermal

equilibrium

o INQA*=INQ+InQ
Ezi(ln Q)
r duU

Define entropy S as
S=k,INQ| =——> Q=g




[Entropy

Feature #1: temperature definition
S k; 1

du T
Feature #2: entropy = sum of entropies

S*=5+3S'
Feature #3: max entropy at equilibrium
o Follows from max Q* at equilibrium

Feature #4: entropy change related to heat
flow




[The Boltzmann Factar

Two Isolated systems
o In thermal contact

Let system A be a single

A

-

0 C< Z

RE<Z

narticle

Let system A’ be a large system

o “reservoir”

Transfer of energy — Number of
microstates in A and A’ change

o Ratio of number of states

=0




[The Boltzmann Factor

Consider system A has two different
energies U, and U,

Reservoir A’ is very large
o Its temperature 7'remains the same
o Has many energy levels

Recall that AU)= Q*(U) | O*,,
Recall that Q" (U)=QU)-Q'(U" -U)



[The Boltzmann Factor

Then,

P(Us) . Q*(Us) . Q(Us) 'Q'(U* _Us)

PU,) Q'(U,) QU,)-QU -U,)

Let

G = Q(Us)

- QU,)

and

R

_Q'U-U))

- Q'UT-U)




[The Boltzmann Factor

Recall that
1 1 dQ 1 1 dQ
— = and — =
r QdU ' Q'dU’
Equilibrium at 7=7",

T'=K,T’

o related to absolute temperature
kg= Boltzmann const=1.38x1023 J Kt
7= absolute temperature K

Consider solving the above equation for €’
o T is constant



[The Boltzmann Factor

1 (dg'j 1 dQ’ 1 |
Q'\duU’ kT dU’ kg T'
Then,

Q' (U") = constant xe"’*s"
Hence, at equilibrium 7= 7

(U™ -U,)/kgT"
R — constant xe / ° (U U, /KgT

constant x gV ~Yr)/ksT’




[The Boltzmann Factor

R Is called the “Boltzmann factor”

o Factor by which the number of
microstates In the reservoir decreases
when the reservoir gives up energy U.-U,

Relative probability of finding system A
with energy U, or U, s given by
PU) _ 5 5| QWU

— R = .e
PU,) QU,)_

_(Us -U r )/kBT




[The Boltzmann Factor

G factor: “density of states factor”
o Property of the system

o EX: single atom with discrete energy
levels, G=1

o Degeneracy: G may be different



[Example 1: Nernst Equation

Concentration of ions on the two sides
of a semi-permeable membrane and
Its relation to the voltage across the
membrane

P@2)_C| e
PL) C,




[Nernst Equation

U= E,+E, (E, Is the same)
o Potential energy Is E,= zev
Then, |C, _ p2e(i=)IkeT
Cl

Since R=N,Kz and F=N e

NEI’HSI.‘ "y RT n C
Equation 2 V1= JE C,

:,




Example 2: Pressure
[variation In the atmosphere

Atmospheric pressure decreases with
altitude

Potential energy: gravitational =mxgxy

C (y) _ e—mgy/kBT
C(0)




[Problem Assignment

Posted on class web site

Web: http://ymk.k-space.org/courses.htm




