Intermediate Physics for Medicine and Biology - Chapter 4

Professor Yasser M. Kadah

Web: http://ymk.k-space.org/courses.htm

Transport in an Infinite Medium

- **Definitions**
- **Continuity equations**
- Brownian motion
- Motion in a gas
- Motion in a liquid
- **Diffusion**
- **Applications**

- **Filow rate, volume** *flux* or volume current (i)
	- Total volume of material transported per unit time
	- o Units: m³s⁻¹
- Mass *flux*
- **Particle flux**

Particle fluence

- Number of particles transported per unit area across an imaginary surface
- \circ Units: m^{-2}
- **Nolume** fluence
	- Volume transported per unit area across an imaginary surface
	- \circ Units: $m^3m^{-2} = m$

Fluence rate or flux density

- Amount of "something" transported across an imaginary surface per unit area per unit time
- Vector pointing in the direction the "something" moves and is denoted by **j**
- o Units: "something" m⁻²s⁻¹
- Subscript to denote what "something" is

TABLE 4.1. Units and names for j and jS in various fields.

Continuity Equation: 1D

- We deal with substances that do not "appear" or "disappear"
	- Conserved
- Conservation of mass leads to the derivation of the continuity equation

Continuity Equation: 1D

- Consider the case of a number of particles Fluence rate: j particles/unit area/unit time
- Value of j may depend on position in tube and time

 \circ $j = j(x,t)$

Let volume of paricles in the volume shown to be $\mathcal{N}(x,t)$

Change after $\Delta t = \Delta N$

Continuity Equation: 1D
\n
$$
\Delta N = [j(x,t) - j(x + \Delta x, t)]S\Delta t
$$
\n
$$
= \frac{\Delta N}{\Delta s \Delta x \rightarrow 0,}
$$
\n
$$
j(x,t) - j(x + \Delta x, t) = -\frac{\partial j(x,t)}{\partial x} \Delta x
$$

Similarly, increase in $N(x,t)$ is,

$$
\Delta N(x,t) = N(x,t+\Delta t) - N(x,t) = \frac{\partial N}{\partial t} \Delta t
$$

Then, the continuity equation in 1D is,

$$
\frac{\partial C}{\partial t} = -\frac{\partial j}{\partial x}
$$

Solvent Drag (Drift)

- One simple way that solute particles can move is to drift with constant velocity.
	- \circ Carried along by the solvent,
- **Process called** *drift or solvent drag.*

$$
\mathbf{j}_s=C\,\mathbf{j}_v
$$

Brownian Motion

- **Application of thermal equilibrium at** temperature T
- **Kinetic energy in 1D** = $k_B T/2$
- **Kinetic energy in 3D** = $3k_BT/2$
- **Random motion** \rightarrow mean velocity $v = 0$
	- \circ can only deal with mean-square velocity v^2

$$
\frac{1}{2}mv^2 = \frac{3k_B T}{2} \Rightarrow v_{rms} = \sqrt{v^2} = \sqrt{\frac{3k_B T}{m}}
$$

Brownian Motion

TABLE 4.2. Values of the rms velocity for various particles at body temperature.

- Brownian motion of particles: collisions
- Mean Free Path
	- Average distance between successive collisions
- Collision Time
	- Average time between successive collisions

- **Consider** $M(x)$ **to be number of** particles without collision after a distance ^x
- For short distances dx , probability of collision is proprtional to dx

$$
dN = N(x) \left(\frac{1}{\lambda}\right) dx \longrightarrow \boxed{N(x) = N_0 e^{-x/\lambda}}
$$

Average distance $=$ mean free path

$$
\bar{x} = \frac{1}{N_o} \int_0^{\infty} x \frac{N(x)}{\lambda} dx = -\lambda \left[e^{-x/\lambda} \left(\frac{x}{\lambda} + 1 \right) \right]_0^{\infty} = \lambda
$$

Similar argument can be made for time

$$
N(t) = N_0 e^{-t/t_c}
$$

 \circ Collision time = t_c

- Need to evaluate λ and t_c
- Consider one particle moving with a radius a_1
- Consider stationary particles with radius a_2

■ After moving a distance x, volume covered is given by,

$$
V(x) = \pi (a_1 + a_2)^2 x
$$

 On average, when a particle travels mean free path, there is one collision \circ Average number of particles in $V(\lambda)=1$ \circ Concentration = 1/V(λ)

$$
C = 1/V(\lambda) = 1/\pi (a_1 + a_2)^2 \lambda \Rightarrow \lambda = \frac{1}{\pi (a_1 + a_2)^2 C}
$$

- **Collision Cross Section is** $\pi(a_1 + a_2)^2$ $\pi(a_1 + a_2)$
	- Important for radiation interaction
- Example: gas at STP, volume of 1 mol = 22.4 L (C= 2.7×10²⁵m⁻³), a₁=a₂=0.15 nm
	- \circ λ =0.13 μ m
	- 1000 times the molecular size
	- Assumption of infrequent collisions justified

Given mean free path λ ,

$$
t_c = \frac{\lambda}{\overline{\nu}}
$$

Taking the average speed as $v_{\rm rms}$,

$$
t_c \approx \lambda \left(\frac{m}{3k_B T}\right)^{1/2}
$$

- \circ Dependence on m^{1/2} and λ
- \circ For air and room temperature, $t_c = 2 \times 10^{-10}$ s

Motion in a Liquid

- Direct substitution in Gas equations?
- **For water,**
	- \circ λ =a=0.1 nm \rightarrow assumption broken
	- \circ to \sim 10⁻¹³s \rightarrow much more frequent
	- Wrong calculations
	- However, concept appears to be valid!

Diffusion: Fick's First Law

- Diffusion: random movement of particles from a region of higher concentration to a region of lower concentration
- Diffusing particles move independently
- Solvent at rest
	- Solute transport

Diffusion: Fick's First Law

- If solute concentration is uniform, no net flow
- **If solute concentration is different, net** flow occurs

$$
j_x = -D \frac{\partial C}{\partial x}
$$

D: Diffusion constant (m²s⁻¹)

Diffusion: Fick's First Law

TABLE 4.3. Various forms of the transport equation.

Diffusion: Fick's Second Law

- Consider 1D case
- **Fick's first law**

$$
j_x = -D \frac{\partial C}{\partial x}
$$

Continuity equation

$$
\frac{\partial C}{\partial t} = -\frac{\partial j}{\partial x}
$$

Diffusion: Fick's Second Law

■ Combining Fick's first law and continuity equation,

 $|\partial^2 C| \rightarrow$ Fick's second law

Diffusion: Fick's Second Law

Solving Fick's second law for $C(x,t)$

Substitution

$$
C(x,t) = \frac{N}{\sqrt{2\pi}\sigma(t)}e^{-x^2/2\sigma^2(t)}
$$

where, 0.5 $\sigma^2(0) = 1$ $\sigma^2(t) = 2Dt + \sigma^2(0)$ 0.4 $C(x,t)/N$ 0.3 $\sigma^2(1) = \sigma^2(0) + 2 \times 1$ 0.2 $\sigma^2(2) = \sigma^2(0) + 2 \times 2$ 0.1 0.0 6 \mathcal{P} $\overline{0}$ -2 -4 -6

x

Applications

- **Kidney dialysis**
- Tissue perfusion
- Blood oxygenation in the lung

Problem Assignments

Information posted on web site