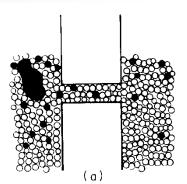
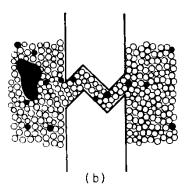

Intermediate Physics for Medicine and Biology - Chapter 5

Professor Yasser M. Kadah

Web: http://ymk.k-space.org/courses.htm

-Transport Through Neutral Membranes

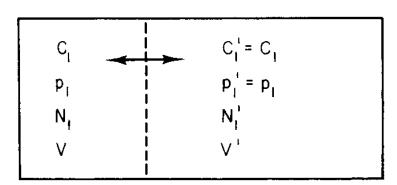

- Membranes
- Osmotic Pressure
- Clinical Examples
- Applications: Artificial Kidney


Membranes


- Cells are surrounded by a membrane
 7-10 nm thick
- Permeable to a substance
 - Substance can pass freely through it
- Semipermeable
 - Only certain substances can get through it
- Permeant
 - Substance that can pass through

Membranes

- Examples
 - Straight pores
 - Tortuous pores
 - No pores; molecules dissolve
- Water motion: bulk flow
- Solute motion: random walk
- Effective motion: diffusion superimposed on bulk flow



Gas law

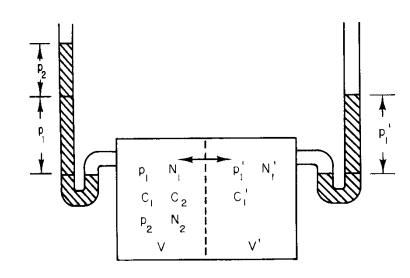
$$p_1V^* = n_1^*RT = N_1^*k_BT$$

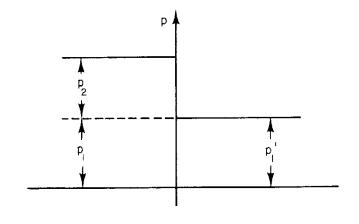
- \circ N_1^* : # of molecules, n_1^* : # of moles
- Denote,

$$C_1 = rac{N_1^*}{V^*} \quad , \qquad c_1 = rac{n_1^*}{V^*}$$

$$N_{\downarrow}^{\star} = N_{\downarrow} + N_{\downarrow}^{\dagger}$$
$$V^{\star} = V + V^{\dagger}$$

- Imagine volume V* divided into two subvolumes V,V'
 - \circ Pressure remains p_1 in both partitions
 - Average number of molecules remain unchanged


$$p_1 = p_1' = C_1 k_B T = C_1' k_B T$$


- Second species
 - Cannot pass through

$$p = p_1 + p_2$$

$$p_1 = C_1 k_B T$$

$$p_2 = C_2 k_B T$$

• Total partial pressure for all species that cannot pass through the membrane is called osmotic pressure and denoted by π

$$\pi_2 = C_2 k_B T$$

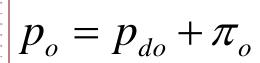
 Total pressure = driving pressure + osmotic pressure

$$p = p_d + \pi$$

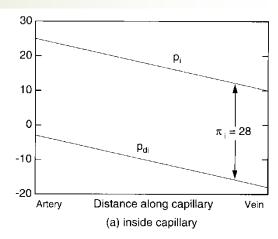
 There is no flow if the driving pressure is the same between the two sides of the membrane

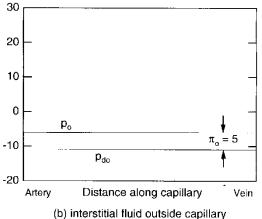
Clinical Examples

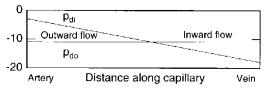
Capillary model



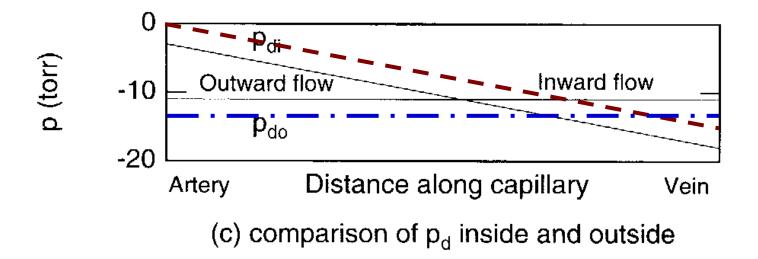
$$p_{do}$$


$$\pi_o$$



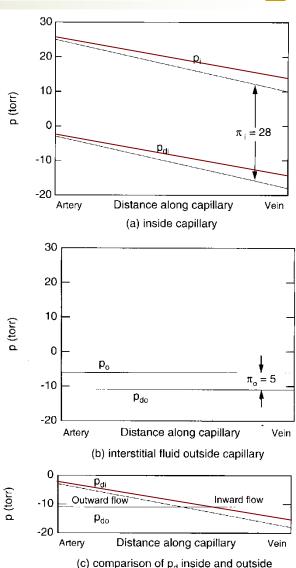


p (torr)

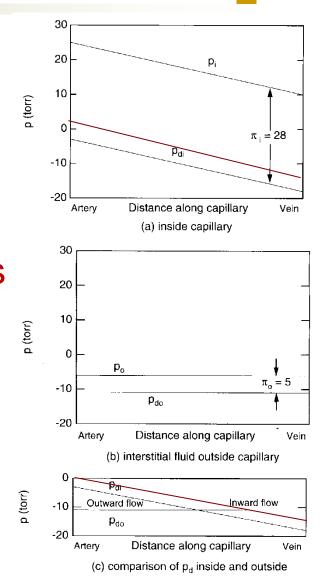


(c) comparison of p_d inside and outside

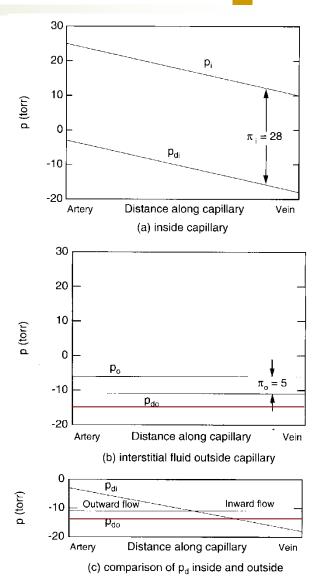
Edema


Abnormal collection of fluid inside tissue

Edema due to Heart Failure


- Right heart failure
 - Swelling of legs
- Left heart failure
 - Pulmonary edema
- Root cause:

Rising venous pressure


Nephrotic Syndrome, Liver Disease and Ascitis

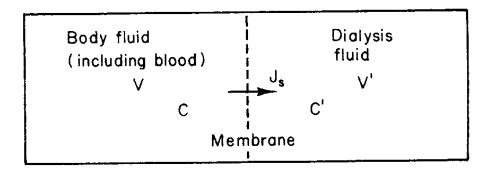
- Lower protein in blood
 - Hypoproteinemia
- Several causes
 - Nephrons leaking proteins
 - Liver malfunction
 - Ascitis (blocking of veins in the liver)

-Edema of Inflammatory Reactions

- 3 Steps
 - Vasodilation
 - Fluid exodation (plasma)
 - Cellular migration
- Rise in osmotic pressure in extracellular space

Headaches in Renal Dialysis

- Capillary-brain barrier
 - Low permeability to urea
- Plasma urea ↓, temporary urea osmotic pressure inside brain ↑
- Water flows into brain causing cerebral edema, which can cause severe headache.
- Converse: inject into blood urea/manitol
 - Water flows from brain to blood
 - Emergency treatment for cerebral edema


Osmotic Diuresis

- Water and many solutes pass into nephron from the blood
- Net reabsorption occurs through the rest of the nephron
 - Most of water and variable for solutes
- Medium-weight molecules are not reabsorbed at all (e.g., manitol, glucose)
 - If they are present, water reabsorption is less
 - Increase in urine volume

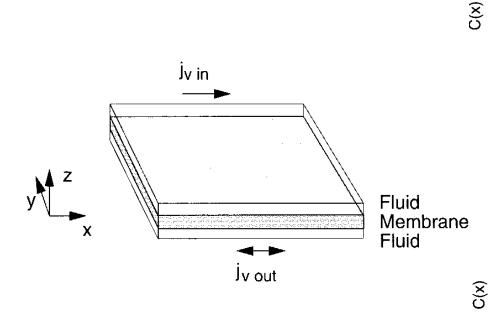
The Artificial Kidney

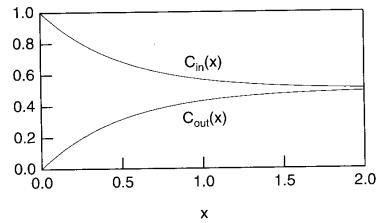
No solvent drag

$$J_s = \omega RT(C - C')$$

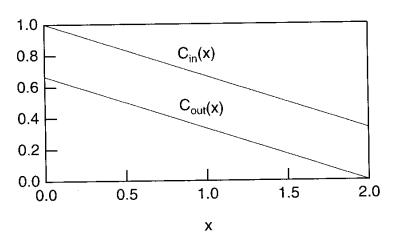
$$\frac{dN}{dt} = -S\omega RT(C - C') \Rightarrow \frac{dC}{dt} = \frac{-S\omega RT}{V}(C - C')$$

$$C(t) = \left[C(0) - C'\right]e^{-t/\tau} + C'$$


where


$$\tau = \frac{V}{S\omega RT}$$

The Artificial Kidney: Example


- Let:
 - $\circ \omega RT = 5 \times 10^{-6} \text{ m/s}$
 - \circ $S= 2 \text{ m}^2$
 - V= 40 L
- Then,
 - \circ τ = 1.1 h
- Dialysis typically takes hours
 - \circ A number of τ must elapse
 - Larger molecules are slower
 - Not to cause cerebral edema and headache

Countercurrent Transport

(a) Both flows are to the right.

(b) The flows are in opposite directions.

Problem Assignments

Information posted on web site