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Overview of Chapter 0

- Importance of the theory of signals and systems
- Mathematical preliminaries
« Matlab introduction (covered in section)



Introduction

- Learning how to represent signals in analog as
well as in digital forms and how to model and
design systems capable of dealing with different
types of signals

» Most signals come in analog form

» Trend has been toward digital representation
and processing of data
= Computer capabilities increase continuously



Examples of Signal Processing
Applications (1)

- Compact-Disc Player
= Analog sound signals
= Sampled and stored in digital form

= Read as digital and converted back to analog
= High fidelity
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Examples of Signal Processing
Applications (2)

- Software-Defined Radio and Cognitive Radio
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Examples of Signal Processing
Applications (3)

« Computer-Controlled Systems
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Analog vs. Discrete

- Analog: Infinitesimal calculus (or just calculus)
= Functions of continuous variables

= Derivative
= Integral
s Differential equations
- Discrete: Finite calculus
s Sequences
= Difference

» Summation
= Difference equations
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Continuous-Time and Discrete-Time
Representations

- Discrete-time signal x[n] and corresponding

analog signal x(t) are related by sampling:
x|n| = x(nTs) = x(t)|i=nT,
o EX: x(t) = 2cos(271),0 <t < 10




Derivatives and Finite Differences

 Derivative operator D

dx(t) .  x(t+h)—x(1)
— |im
At h—0 h

Dlx(t)] =

- Forward finite-difference operator A

Alx(nT)] = x((n + DTy — x(nTy) | mmp | Alx[n]] = x[n + 1] = x[n]

- Operators on functions to give other functions
- Related by:

dx(t) . Alx(nTs)|

(—nT.= lim
dt | nTs >0 T.




Derivatives and Finite Differences:
Example

» Consider the following 3 cases

xo[n] = 2 Alxo[n]]=2-2=0
x1(t) =t Alxi|n]| = Anl=n+1)—n=1
w=02  Alhll=AR] =m0+ —n'=2n+1

derivative A[x>(0.01n)]/Ts = 1072(2n + 1)

Whenever the rate of change of the signal is faster,
difference gets closer to derivative by making T, smaller



Integrals and Summations

« Integration D

[

[(t) = /x(r)dr

o

DID™! [x(0)]] = x(1).

t

dl©) = lim o= te=n = lim . f x(t)dt

dt h—0 h h—0 h
t—h
x(t (t—h
~ lim o) + ) = x(1)
h—0 2

- Computationally, integration is implemented by sums
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Integrals and Summations:
Example

- Approximation of area under x(t)=t, 0<t<10

1 S
> True result: t2/2= 50 N R
(3 A WU O NS,
» Ts=1: sum result= 45 s
. Very poor apprOXimation 4 T STt SO
2] T —

» Ts=1073: sum result= 49.995  °
+ Much better approximation




Differential and Difference Equations

- Differential equation characterizes the dynamics
of a continuous-time system

= approximated as linear constant-coefficient

differential equations for simplification

» Solution: Analog computer P

| dvc(t) .
vi(t) = ve(t) + At ‘ vi(t) _() 10

« Solution: Digital Computer
= Convert to derivative to difference
= Difference equation




Differential and Difference
Equations: Block Diagram

- Realization of 15t order differential equation
= Practical implementation using Op Amp circuits
dvc(t)
dt

vi(t) = ve (1) +

dvi(t)
vi(t) ve(t)  vi(t) dt Ve(t)

- g - OFL g
D'Vc(!‘) d() y

(@) (b)




How to Obtain Difference Equations?

- Start from the differential equation:
dvc(t)

vi(t) = ve(t) + I

t
V(1) = /[vi(r) — ve(7)|dt + v.(0) t>0
0

Ve(ty)
Vc(to)p\
51 5 e
ve(ty) — ve(tp) = f“i(f)df _/vc(f)df
lo to ot
At At to b
ve(ty) — ve(t) = [vi(t1) + L’f(fo)]7 — |ve(t1) + 'vf;(fo)]? ) At

2

At At At
ve(t1) [1 + 7] = [vi(t1) + 'Ui(fo)]7 + ve(lo) [1 — —]




How to Obtain Difference Equations?

 Assuming At=T, let t.= nT, t,= (n-1)T, initial
condition v,(0)=0,

2

At At At
ve(ty) |:1 + 2] = [Uf(tl.) + Vi@ﬁ)]? + ve(to) |:1 — ]

\ 4

2+ T

T
v-(nT) = 5

n T[vi(ﬂT) +vi((n — DD +

ve((n—1)T) n=>1

» First order linear difference equation with
constant coefficients
s Approximation of differential equation



Solution of Difference Equation

- Recursive solution
= Obtain solution for n given solution for n-1
- Example: Solution for input vi(t) =1 fort >0

oo (nT) = {0 n=20
T g e =DD) >

n=2~0 ve(0) =0
n=1 v(T)y =M
n=>2 v-(2T) =M+ KM = M(1 + K)

M=2T/2+T),K=2-T)/2+T)

n=3 v.3T) =M+ KM+ KM) =M1 + K+ K?)
n=4  v.4T)=M+KM(1+K+K*)=M(1+K+K>*+K>



Complex Variables

- Most of the theory of signals and systems is
based on functions of a complex variable

- However, practical signals are functions of a real
variable corresponding to time or space

- Complex variables represent mathematical tools
that allow characteristics of signals to be defined
in an easier to manipulate form
= Example: phase of a sinusoidal signal



Complex Numbers and Vectors

- A complex number z represents any point (x, y):
Z=X+]Uy,

A (X, ¥)
s x =Re[z] (real part of z) Vh------ .
= y =Im|z] (imaginary part of z) 2,7

* J =Sqrt(-1) AT X
 Vector representation X

> Rectangular or polar form  z=x+jy = [z]¢”
= Magnitude [l=x+y>=zI and Phase 6 =/z=/z



Complex Numbers and Vectors

- Identical: use either depending on operation
= Rectangular form for addition or subtraction
= Polar form for multiplication or division
- Example: let z=x+jy=[z¢“* andv=p+iq= |v|d<"

A Z+vV

z+v=(x+p) +jy+q

7y — ‘zlejéﬂlvlgjélf — ‘.Z| ‘Ulej(ZZ—I—LU}

More

2 = (x+jp)(p+jq) = (xp — yq) +j(xq +yp) =)

Difficult



Complex Numbers and Vectors

- Powers of complex numbers: polar form

| A
M zlnejn.éz, A J=i1 05
" w2 (=™ n=2m, neven =500
} = (—1) = 1 m: < —>
(=1D"] n=2m+1, nodd 120 j4
. : _37 Y
« Conjugate |z* =x —jy =|z[e /47 R
t (x. )
(i) z+4+z2"=2x or Re[z] =0.5[z+z"] |2
(i) z—2z"=2jy or Imlz]=0.5[z—z"] & >
—60
(iii) zz* =|z|> or |z| = Vzz*
. |z1
(iv) L S —j0.5[log(z) — log(z™)] (X, -Y)

z*



Functions of a Complex Variable

« Just like real-valued functions
= Example: Logarithm
v =log(z) = log(\z\eje) = log(|z]) + j¢

- Euler’s identity ”
¢” = cos(6) + jsin(6)

= Proof: compute polar representation of R.H.S.
cos(#) +jsin(@) = 1"
= Example: b7 — 1 mm) | +eT=14¢7" =0



Functions of a Complex Variable

- Starting from Euler’s Identity, one can show:

- B 0 B 6}9 _I_ e_}.g
¢ = cos(f) + jsin(6) : cos(0) = Rele"] = —

= —jsi B
e 7 = cos(f) —jsin(0) sin(9) — IHI[GJG] e e

e ¥+ e”
cos(jo) = = cosh(w)
e % = cosh(a) — sinh(«) ‘ J 2
jsin(ja) = ‘ 2_8 = —sinh(«)

ejt’:‘ 4+ 8—}9
2

2
1 : : 1 1
cos? () = [ } = 3[2 +e% 47 = > + 5 cos(26)



Phasors and Sinusoidal Steady State

- A sinusoid is a periodic signal represented by,
v(t) = A cos(Q20t + )
- If one knows the frequency, cosine is characterized
by its amplitude and phase.
 Define Phasor as complex number characterized
by amplitude and the phase of a cosine signal
V=AY = Acos(y) + jAsin(y) = ALY

= Such that |
u(t) = Re[Ve0!] = Re[Ad D0V ] = A cos(Qot + ¥)



Phasor Connection

- Fundamental property of a circuit made up of
constant resistors, capacitors, and inductors is
that its response to a sinusoid is also a sinusoid
of same frequency in steady state
s Circuit of linear and time-invariant nature

90 30

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
270
Phasor 1+Phasor 2



Phasor Connection

- Example: Steady state solution of RC circuit with
Input vi(t) = Acos(Qot)
= Assume that the steady-state response of this

circuit is also a sinusoid (i-e, v(t) ast — 00) . _ i
P

= Then, we can let ve(t) = Ccos(Qot + ) S
= Substitutein . = d”;?) 4 (D) 0 O = 10

Acos(Qpt) = —CQp sin(Qpt + ) + Ccos(QLpt + V)

A

J1+95

Y = —tan” ' (Qo)

= CQpcos(QLot+ v +7/2) + Ccos(Qot + V) C =

=Cy/ 1+ Q% cos(Q2ot + ¥ + tan~! (CLRp/C)) #




Phasor Connection

- Same solution using phasor notation:

V. = Ce¥ ve(t) = Re erjgﬂt
Vi = A’ vi(t) = Re _V,-ejﬁﬂt_
dv.(t)  dRe[V, el%] de/So! g 0
— =R Vf =R $2 VLGJ of
dt dt ‘ dt ‘ .J 0 ]

= Differential equation: Re [Vc(l +J'Qo)e‘m“1 = Re [Aéjgﬂr]
= By comparison, get V, and hence C and y



Problem Assignments

- Problems: 0.1, 0.2, 0.3, 0.11, 0.12, 0.15, 0.23

« Partial Solutions available from the student
section of the textbook web site



