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Overview of Chapter 2

- Systems and their classification
- Linear time-invariant systems



“System” Concept

- Mathematical transformation of an input signal
(or signals) into an output signal (or signals)
= Idealized model of the physical device or process

Input Qutput
x(t) y(t)=S[x(1)]
—P> S —>

- Examples:
s Electrical/electronic circuits

- In practice, the model and the mathematical
representation are not unique




System Classification

- Static or dynamic systems
= Capability of storing energy, or remembering state
- Lumped- or distributed-parameter systems
- Passive or active systems
» Ex: circuits elements
- Continuous time, discrete time, digital, or hybrid
systems
= According to type of input/output signals



LTI Continuous-Time Systems

- A continuous-time system is a system in which
the signals at its input and output are

continuous-time signals Input Output
- x(f) y(t)=S[x(1)]
x(t) = y(t) =S[x()] Y

Input Output




Linearity

» A linear system is a system in which the
superposition holds
= Scaling
= Additivity S

/ input

Nonlinear

Linear

Slax(t) + Bv(t)| = Slax(t)] + S[Bv(t)]

— t:ES[x(I)] + ﬁS[v(t)] Output 47tem
- Examples: | )
* y(x)=ax == Linear / .
« y(x)=ax+b == Nonlinear



Linearity - Examples

- Show that the following systems are nonlinear:
(1) y(t) = [x(0)]
(11) z(t) = cos(x(f)) assuming |x(f)| <1
(iii) v(t) = x* (1)
= where x(t) is the input and y(t), z(t), and v(t) are
the outputs.

Whenever the explicit relation between the input and the output of a

system |s represented by a nonllnear expressnon the system is nonllnear



Linearity - Examples

 Consider each of the components of an RLC
circuit and determine under what conditions
they are linear.

° R u(t) = Ri(t)
[
1
o C i(t) = Cdv(t)/dt ve(t) = C / i(t)dt + v:(0)
OI‘
= L dp(ry  dip(1)

. 1 .
1L(1) = T [ v(t)dr +ir(0)

0

) = =L
v(t) dt dt



Linearity - Examples

 Op Amp

= Linear or nonlinear region

Vo (1) = Avy(t) — AV < va(t) < AV

 Virtual short

A_>‘OO Rf”—)*OO

+——>
® ——
vo(t)  * g

- =1+ =0 v,() Vo)

va(t) = vy (1) —v_(t) = 0

AV

» Vg(t)



Time Invariance

- System S does not change with time
= System does not age—its parameters are constant

Input Output
x(f) y(t)=S[x(1)]
—P S >

x(t)y = y(t) = S[x(1)]

YFT) = ptFr)=St£1)] —

- Example: AM modulation | E?w
y(t) = cos(L2p1)x(t)

___________

Transmitter



E————————.
RLC Circuits

(=0 A R ¢
- Kirchhoff’s voltage law, it ‘

t - ﬁl_
' v(t)
v(t) = Ri(t) + Ldl(t') + ! f i(t)dt —<>

dt C
d/dt 0
dv(t) Rdi(t_) +Ld-?f(::) N é o

dt dt dt?
- Second-order differential equation with constant
coefficients

= Input the voltage source v(t)
s Qutput the current i(t)



Representation of Systems by
Differential Equations

» Given a dynamic system represented by a linear
differential equation with constant coefficients:

dy(t) dNy(1)
i T TN

dx(t) dMx(t)
a Ty

aogy(t) + a = box(t) + by t>0

= N initial conditions: y(0), d“y(t)/dt*|;—o for k=1,...,N —1
= Input x(t)=0 for t < 0,

- Complete response y(t) for t>=0 has two parts:
o Zero-state response
s Zero-Input response

V(L) = yzs(t) 4+ vz (1)




Representation of Systems by
Differential Equations

 Linear Time-Invariant Systems

= System represented by linear differential equation
with constant coefficients

= Initial conditions are all zero
= Qutput depends exclusively on input only

- Nonlinear Systems
s Nonzero initial conditions means nonlinearity
= Can also be time-varying

V(1) = yzs(1)

Y(t) = yzs(t) + yzi(t)




Representation of Systems by
Differential Equations

- Define derivative operator D as,
d"y(t)
dt"

D°[y()] = y(1)

D"[y(t)] = n > 0, integer

» Then,

! N, M ..
dy(t) -I-d y(t) dx(t) b d™x(t)

apy(t) + a; = box(t) + by + -+ by Y t>0

dt o dtN dt

¥

(ap +a;D+---+DM[y)] = (bo + b1D +--- + by D")[x()] >0



Analog Mechanical Systems

Table 2.1 Equivalences in
Mechanical and Electrical
Systems

Mechanical System Electrical System

force f(t) voltage V(i)
velocity wi(t) current i(t)
mass M inductance L
damping D resistance R

compliance K capacitance C




Application of Superposition and
Time Invariance

« The computation of the output of an LTI system is
simplified when the input can be represented as the
combination of signals for which we know their response.

= Using superposition and time invariance properties

If § is the fransformation corresponding to an LTI system, so that the response of the system is
y(t) = S[x(1)] for an input x(t)

then we have that

o

S At — m] =Y ARSIxt — )] = ) Ayt — )
Lk k k

S fg(_r)x(t - r)dt] = fg(r)é;[x(r —1)]dr = fg(r)}f(r — 1)dt

In the next section we will see that this property allows us to find the response of a linear time-invariant
system due to any signal, if we know the response of the system to an impulse signal.




Application of Superposition and
Time Invariance: Example

- Example 1: Given the response of an RL circuit to a unit-
step source u(t), find the response to a pulse v(t) = u(t) — u(t — 2)




Convolution Integral

o0
- Generic representation of a signal: x(1) = f x(1)8(t — 1)dv
—00

- The impulse response of an analog LTI system, h(t), is the
output of the system corresponding to an impulse 8(t) as
input, and zero initial conditions

« The response of an LTI system S represented by its impulse
response h(t) to any signal x(t) is given by:

o0 o0

y(t) = f x(o)h(t — t)dr = f x(t — v)h(r)dr Convolution
oo 'ac _ Integral

= [x % h](t) = [h * x](1)




Convolution Integral: Observations

- Impulse response is fundamental in the characterization
of linear time-invariant systems

- Any system characterized by the convolution integral is
linear and time invariant by the above construction

- The convolution integral is a general representation of
LTI systems, given that it was obtained from a generic
representation of the input signal

- Given that a system represented by a linear differential
equation with constant coefficients and no initial
conditions, or input, before t=0 is LTI, one should be
able to represent that system by a convolution integral
after finding its impulse response h(t)



Convolution Integral: Example

- Example: Obtain the impulse response of a capacitor and
use it to find its unit-step response by means of the
convolution integral. Let C=1F.

t

u(t}o—l i(t)d
0= i

0
letting the input i(t) = §(t)
t
h(t) = : S(t)dt = : t>0
1(,)_6 r)rr_E - =
0
o0

f éu(t — Du(t)dr

—0

ve(t) = f h(t — )i(t)dt =



Causality

- A continuous-time system S is called causal if:
= Whenever the input x(f)=0 and there are no initial
conditions, the output is y(t)=0
= The output y(t) does not depend on future inputs

- For a value 7> 0, when considering causality it is helpful
to think of:

= Time t (the time at which the output y(t) is being
computed) as the present

= Times t-7 as the past
= Times t+7 as the future



Causality

An LTT system represented by its impulse response h(t) is causal if
h(t) =0 fort <0

The output of a causal LTT system with a causal input x(t) (i.e, x(t) = 0fort < 0) is

t

y(t) = fx(r)h(r — t)dt
0




Graphical Computation of
Convolution Integral

- Example 1: Graphically find the unit-step y(t) response
of an averager, with T=1 sec, which has an impulse
response h(t)= u(t)-u(t-1)

4 h(t-r1) 4 y(1)

b7 >
t—1 t 0 R t




Graphical Computation of
Convolution Integral

- Example 2: Consider the graphical computation of the

convolution integral of two pulses of the same duration
4 hit-1) A y(1)

> T >
-1 t 0 0 1 2

T

0 1

The length of the support of y(t) = [x % h](t) is equal to the sum of the lengths of the supports of x(t) and h(t).




Interconnection of Systems—

Block Diagrams

» (a) Cascade (commutative) —* ™© [ "0 ——0
(a)

h(t) = [h1 # ha|(t) = [h % h1](t)

— hi(f)

« (b) Parallel (distributive)

h(t) = hy(t) + ha (1)

» (c) Feedback (b)

> hi(1) > y(t)
h(t) = [h1 — hx hy x ha](t) AT
ho(f) |[&———

(c)




Bounded-Input Bounded-Output
Stability (BIBO)

- For a bounded (i.e., well-behaved) input x(t), the output

of a BIBO stable system y(t) is also bounded

- An LTI system with an absolutely integrable impulse

response is BIBO stable
- Example: Multi-echo path system

y(O] < leeq||x(t — 1) | + Joa||x(t — 12)| < [|er] + |2 | |M

x(t)

p| Delay 74

p| Delay 7,

X4

y(t)



Problem Assignments

» Problems: 2.3, 2.4, 2.8, 2.9, 2.10, 2.12, 2.14

« Partial Solutions available from the student
section of the textbook web site



