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Eigenfunctions of LTI Systems

- Consider as the input of an LTI system the complex
signal x(1)=¢""  so=00+jQ

o0 o0

y(t) = f h(t)x(t — t)dt = / h(t)e'"Ddr

—00 — 0
(8.
— %0t f h(t)e "°dt = x(t)H(sp)
—00
~ LTI System
_ ,—Ts f) = eSo y(t)=x(t) H(sy)
H(s) = f h(t)e™ “dr x(t)=e H(s) 0
—00

Laplace Transform of h(t)!



Eigenfunctions of LTI Systems

An input x(t) = €%, s = o + jQ0, is called an eigenfunction of an LTI system with impulse response h(t) if
the corresponding output of the system is

Y () = x(0) f h(t)e*0" = x(t)H(s0)

where H(sp) is the Laplace transform of A(t) computed at s = sg. This property is only valid for LTI systems—it
is not satisfied by time-varying or nonlinear systems.

« Suppose a signal x(t) is expressed as a sum of complex
exponentials in s

o +jo0 o +j00 | o +joo
x(t) = i f X(s)e'ds }!(I) = — X(s) [H(s)e"] ds = — Y (s)etds
o —Jo0 o —joo o—joo

y(t) = [x % h](t) & Y(s) = X(s)H(s)




The Two-Sided Laplace Transform

The two-sided Laplace transform of a continuous-time function f(t) is
o0
F(s) = L|f(1)] = f f(e'dt s eROC (3.2)
—00

where the variable s = o + j2, with Q as the frequency in rad/sec and o as a damping factor. ROC stands for
the region of convergence—that is, where the integral exists.

The inverse Laplace transform is given by
o +joC
1
f(ty=L7YF@s)] = g f F(s)e™ds o € ROC (3.3)
g

o —joo




The Two-Sided Laplace Transform

- Laplace transform F(s) provides a representation of f(t) in
the s-domain, which in turn can be inverted back into the
original time-domain function (1:1)

- Laplace transform of impulse response of an LTI system
h(t) is H(s) and is called the system or transfer function

- Region of Convergence: region in s where transform exists

For the Laplace transform of f(t) to exist we need that

o0
f f(tetdt
—00

o0
[ F(tyeOte IS gy
—00

0]
< f | f()e™ 7t | dt < 00
—00

or that f(t)e~?! be absolutely integrable. This may be possible by choosing an appropriate o even in the case
when f(t) is not absolutely integrable. The value chosen for o determines the ROC of F(s); the frequency Q
does not affect the ROC.




The Two-Sided Laplace Transform

« ROC

The Laplace transform of a
m Finite support function (i.e, f(t) =0fort <ty andt > tp, fort; < tz) is

LIf(O] = L[fO)]ut —t1) —u(t —t2)]] whole s-plane
m Causal function (i.e, f(t) = 0fort < 0)is
LIf(Ou)] Re = {(0,Q) : 0 > max{oj}, —00 < 2 < 00}
= Anti-causal function (i.e, f(t) =0 fort > 0) is
LlfHu(=t)]  Rac = {(o, Q) : 0 < min{o;}, —00 < Q < o0}
= Noncausal function (i.e., f(t) = fac(t) + fc(t) = f(Ou(—t) + f(Ou(t)) is

LIFD] = Llfac(=Du®]—g + LUfecu®]  Re[ | Rac




The One-Sided Laplace Transform

The one-sided Laplace transform is defined as
o0
F(s) = L[f(DHu(t)] = /f{t}u(r}e_“dr (3.8)
[)_

where f(t) is either a causal function or made into a causal function by the multiplication by u(t). The one-
sided Laplace transform is of significance given that most of the applications deal with causal systems and
signals, and that any signal or system can be decomposed into causal and anti-causal components requiring
only the computation of one-sided Laplace fransforms.




Linearity

For signals f(t) and g(t), with Laplace transforms F(s) and G(s), and constants a and b, we have the Laplace
transform is linear:

Llaf (tHyu(t) + bg(HHu(t)] = aF(s) + bG(s)

Llaf(tHu(t) + bg(tHu(t)] = f[af(t) + bg(t)u(t)e™"dt
0

o0 >0
:a[f(t)u(t)e_”dt—l—bfg(t)u(t)e_“dt
0 0

=aLllf(u(t)| + bLg(t)(1)]



Differentiation

For a signal f(t) with Laplace fransform F(s) its one-sided Laplace transform of its first-and second-order
derivatives are

[& (t)] sF(s) — f(0—) (3.11)
1f r if I i | is evaluated b
L te t art
’ [rf(t)u(r):| _ f if(”e—”d: integral is evaluated by parts
dt o dt f wdy = wv — f vdw
[d_):j(: eSSt At — e—stf(t) }0 [f(r (—se™ sr)dr

00—



Integration

The Laplace transform of the integral of a causal signal y(t) is given by

t
ﬁ[ [ s u@} _¥o 310

0

t
i
f(t) = f}f(r)dru(t) ‘ % = y(t)u(t)

0

|: dt :|—3. (s) —f(0) ‘ F(s):£|:fy(r)dr:| :T

= Y (s) 0



I ——.
Time Shifting

If the Laplace fransform of f(t)u(t) is F(s), the Laplace transform of the time-shifted signal f(t — t)u(t — 7) is

LIf(t — yu(t — )] = e TSE(s) (3.15)

- Simply shown by a change of variables



Convolution Integral

The Laplace transform of the convolution integral of a causal signal x(t), with Laplace transforms X(s), and a
causal impulse response h(t), with Laplace transform H(s), is given by

LG (D] = X(SH(S) (3.16)
o0
y(t) = fx{r)h(t — 1)dt t >0
0
>0 0 o0
Y(s) =L fx(r)h(t —1)dt | = f fx(r)h(t —1)dt | e 'dt
0 0o Lo

o

(. 8]
[x(r) fh(t— r) e300 dt | eTdr = X(s)H(s)
0

0 o — EDO1 _ £l ouput
m—) | = Z[x(0] _ L[input]




Laplace Transformation Table

Table 3.1 One-Sided Laplace Transforms
Function of Time Function of s, ROC

1. 3(t) 1, whole s-plane

2. u(t) 1, Rels] > 0

3. r(t) 5, Rels] > 0

4. e u(t), a >0 s+a Rels] =

b. cos(Qohu(r) 52+92 Rels] = 0

6. sin(QoH)u(t) s?-?g}ﬂ’ Rels] = 0

7. e~ % cos(Qohu(t), a = 0 ﬁ Rels] > —

8. e~ sin(QoHu(t), a = 0 u+r§++ﬁﬁ Re[s] > —

9. 2Ae “cos(Qot +6)u(t), a>0 S + A0y Rels| > —a
10. e () 4 Naninteger, Rels| > 0
11. (Nll), (N=le=aty(p) (+‘}w N an integer, Re|s] > —
12, & (N lem cos(Qot + 6)u(t) Mj_fj’gw + (Sj;f}ﬂiw, Re|s] > —




Laplace Transform Properties

Table 3.2 Basic Properties of One-Sided Laplace Transforms

Causal functions and constants  af(t), Bg(t) aF(s), BG(s)

Linearity af (t) + Bg(t) aF(s) + BG(s)

Time shifting flt —a) e “F(s)

Frequency shifting e* f (1) F(s — a)

Multiplication by t tf(t) — &)

Derivative % sF(s) — f(0—)
. . 2

Second derivative d d{g” s2F(s) — sf(0—) — f(M(0)

Integral [o_ f(t)dt e

Expansion/contraction flat)a #0 ﬁP (2)

Initial value f(0+) = limg_ oo SF(5)

Final value lim;— oo f(f) = lims— g SF(s)




Example 1

Find the Laplace transforms of §(t), u(t), and a pulse p(t) = u(t) — u(t — 1).

o0 o0 o0
L[5(1)] = f S(t)e tdt = f S(t)eCdt = f S()dt = 1
—0 — 0 —00
o oo o0 st
U(s) = Llu(t)] = / u(t)etdt = /e‘”dt: /e‘“e‘jmdt m) Us) = E_ =0 =%
—00 0 0

\ —e™st 1 e
P(s) = Llu(t+ 1) —u(t—1)] = fé‘_srdt = : r]=—1 = :[65 —e | = ?[1 —e_zsl

—1




Example 2

» Compute H(s) for: h(t) = e~ tu(t) + e*'u(—1)
— hc(f) + hmj(f)
- Using table:

]
= causal component: H.(s) = — - —1

1
—s4+2

= Anti-causal component: L, (1)] = L[hae(—Du(0)](—s) =

¥

] N 1 -3
s+1 —s+2 (G+1Ds—2)

o < 2

H(s) = —1 <0 <?2




Example 3

Compute the Laplace transform of the ramp function r(t) = tu(t) and use it to find the Laplace of
a triangular pulse A(t) = r(t 4+ 1) — 2r(t) +1(t — 1).

o0

et 1
R(s) =fte_“dt= —5—(=st = 1) |t 0= o=>0
5 52

) a

0

1
‘ A(s) = 5[ =2+ g >0
S



Example 4

- Use the differentiation property to compute the Laplace
transformation of &(), u(t), and r(t) starting from R(s)
derived in Example 3

1
I dr(t) ] 1 1
ClrO =772 =75
| du(t 1
L 3(1‘.):”;({) =S:=1




Example 5

- Let y(t) be a causal signal. Compute Y(s) given that

[

f}*(r)dr = 3u(t) — 2y(t)
I |

Y(s) 3 _ 3
— =5 20 ‘ YO =5F05)

)




Problem Assignments

» Problems: 3.2, 3.3, 3.6. 3.7

- Try the Matlab code in the example in Chapter 3

- Partial Solutions available from the student section of
the textbook web site



