Signals and Systems - Chapter 5

The Fourier Transform
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Overview of Chapter 0

- Importance of the theory of signals and systems
- Mathematical preliminaries
« Matlab introduction (section)



Fourier Transform Definition
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x(t) ‘ Transform ‘ X(€)

() & X(Q)

where the signal x(t) is transformed into a function X(£2) in the frequency domain by the
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Fourier transform: X(Q) = f x(H)e I3 gt
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while X(€2) is transformed into a signal x(t) in the time domain by the
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Existence of Fourier Transform

» The Fourier transform of a signal x(t) exists (i.e., we can
calculate its Fourier transform via this integral) provided
that:
= x(t) is absolutely integrable or the area under |x(t)| is

finite
= x(t) has only a finite number of discontinuites as well
as maxima and minima

- These conditions are “sufficient” not “necessary”




Fourier Transforms from
Laplace Transforms

- If the region of convergence (ROC) of the Laplace
transform X(s) contains the jQ axis, so that X(s) can be
defined for s= D jQ, then:
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Fourier Transforms from
Laplace Transforms - Example

- Discuss whether it is possible to obtain the Fourier transform of the
following signals using their Laplace transforms:

(@) x1(t) = u(r)
(b) x2(t) = e ?'u(t)

(a) The Laplace transform of x(t) is X;(s) = 1/s with a region of convergence corresponding
to the open right s-plane, or ROC ={s=0+jQ:0 > 0, —00 < Q < 00}, which does not
include the jQ2 axis, so the Laplace transform cannot be used to find the Fourier transform
of x1(1).

(b) The signal x, (t) has as Laplace transform X, (s) = 1/(s 4+ 2) with a region of convergence ROC
={s=0+jQ:0 > -2, 00 < Q < o0} containing the j2 axis. Then the Fourier transform of
X, (1) 1s
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Table 5.2 Fourler Transform Pairs
Function of Time Function of 2
1 8(1) 1
2 S(t—r1) e IS
3 u(h) o Q)
4 u(—i) o +rsQ)
5 sgn(r) = 2[u(r) — 0.5] J%
6 A —00<t< 2w AS(S2)
_ A
7 Ae ™u(t), a >0 Fomw
_at A
8 Ate“u(t), a =0 Go+a)?
—a 2
9 el g4>0 Tror
10 cos(Qpf), —00 <t < 0 T[6(2 — Qo) + (2 + Qp)]
11 sin(Qot), —o0 <t < 00 —i[8(2 — Qo) — 8(Q + Qo)
12 Alu(t4+17)—ut—1)], t>0 2AT Si”sg?r)
13 snld u(S2 + Qo) — u( — Qo)
14 x(t) cos(2pt) 0.5[X(2 — Q2p) + X(2 + Q2p)]




Linearity

- Fourier transform is a linear operator
 Superposition holds

If Flx(t)] = X(2) and Fly(t)| = Y(2), for constants « and g, we have that

Flax(t) + By(0)| = aF[x(0)| + BF|y(1)]

= aX(£2) + pY(€2)




Inverse Proportionality of Time and
Frequency

» Support of X(Q) is inversely proportional to support of x(t)
 If x(t) has a Fourier transform X(Q2) and «a+0 is a real
number, then x(at) is:

m Contracted (o > 1),

m Contracted and reflected («¢ < —1),

m EBExpanded (0 <« < 1),

m EBExpanded and reflected (=1 < « < 0), or

m Simply reflected (o0 = —1)

« Then, ] O
x(at) <& —X ()

|\«




Inverse Proportionality of Time and
Frequency - Example

 Fourier transform of 2 pulses of different width
= 4-times wider pulse have 4-times narrower Fourier

transform
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Duality

- By interchanging the frequency and the time variables in
the definitions of the direct and the inverse Fourier
transform similar equations are obtained

« Thus, the direct and the inverse Fourier transforms are
dual

x(t) < X(Q)

Il

X0 & 279
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Duality: Example
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R
Signal Modulation

m Frequency shift: If X(£2) is the Fourier transform of x(t), then we have the pair
X0 & X(Q - Qo)
m Modulation: The Fourier transform of the modulated signal
x(1) cos(£2pt)
is given by

0.5 [X(2 — Qp) + X(2 + Q)]

That is, X(€2) is shifted to frequencies ¢ and — 2, and multiplied by 0.5.




Signal Modulation: Example

Xo(1) cos(10t)

Yo(t)=
S
o
;
|

| Yo(Q)|




Fourier Transform of Periodic Signals

For a periodic signal x(t) of period T, we have the Fourier pair

x(t) = Xl o X(Q) =) 27X,8(2 — kQ0)
ke k

obtained by representing x(t) by its Fourier series.

- Periodic Signals are represented by Sampled Fourier
transform

- Sampled Signals are representing by Periodic Fourier
Transform (from duality)



Fourier Transform of Periodic Signals:
Example

1
= 05
>
0
5 0 5
t
5 i
4 [ 4
@ 3 ;' ‘ll T [ e
x o | D
1 I‘.'I I"I‘ @ L 00 0 S
0 i\ =
5 0 5 0—o—o— o7 o 5 —5 0 9 o ¢ 9
Q B T l ____________ ___________ l _______________________________________________________________________________________________________________
i
-50 0 50




Parseval’s Energy Conservation

For a finite-energy signal x(t) with Fourier transform X(€2), its energy is conserved when going from the time
to the frequency domain, or

oo 1 o0
E, = f |x(t)|2dt=2— f IX(Q)]2d2 (5.15)
s
—00 —00

Thus, |X(2)|? is an energy density indicating the amount of energy at each of the frequencies .

The plot [X(§2)|? versus € is called the energy spectrum of x(t), and it displays how the energy of the signal is
distributed over frequency.

« Energy in Time Domain = Energy in Frequency Domain



Symmetry of Spectral Representations

If X(2) is the Fourier transform of a real-valued signal x(t), periodic or aperiodic, the magnitude |X(2)] is an
even function of :
X()] = IX(—)| (5.16)
and the phase ZX(£2) is an odd function of Q:
ZX(Q) = —ZX(—Q) (5.17)
We then have:
Magnitude spectrum: |X(£2)] versus Q
Phase spectrum: ZX(2) versus 2
Energy/power spectrum:  |X(£2)|2 versus €2

« Clearly, if the signal is complex, the above symmetry will
NOT hold



Convolution and Filtering

If the input x(t) (periodic or aperiodic) to a stable LTI system has a Fourier transform X(£2), and the system has
a frequency response H(j2) = F[h(t)] where h(t) is the impulse response of the system, the output of the LTI
system is the convolution integral y(t) = (x * h)(t), with Fourier transform

Y(Q) = X(Q) H(jQ) (5.18)

- Relation between transfer function and frequency

respomnse:
“ H(jQ) = 1)
Y= X @)

H(j2) = LIh(®)]|s=ja
= H(s)|s=jo




Basics of Filtering

« The filter design consists in finding a transfer function
H(s)= B(s)=A(s) that satisfies certain specifications that
will allow getting rid of the noise. Such specifications are
typically given in the frequency domain.

Y(£2) = H(jR)X(£2)




ldeal Filters
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Spectrum Analyzer

Power

I LPF | measurement > Fx(0)

| BPF, ||  Power | L b

measurement
x(t)
Power
| BPFy |—» )
N measurement Px(E2n)




R
Time Shifting Property

If x(t) has a Fourier transform X(£2), then

X(t—tg) & X(Q)e Jio
X(t+19) & X(Q)eltHo

e ExampleI Jf(t) — A[(‘j([ — 1') + S(I + T)]

4

X(Q) = A[1e74%7 4 1%7]



Differentiation and Integration

If x(t), —o0 < t < o0, has a Fourier tranform X(€2), then

dN}f(t) ) N
Q) X(Q2
= e (M@
[
[.:C(J)dﬂ' = X_(—;;)—FHX(O)MQ}
J

—00

where

o0

X(0) = /x(t)dt

—00




Table 5.1 Basic Properties of the Fourier Transform

Signals and constants
Linearity
Expansion/contraction in time
Reflection

Parseval's energy relation
Duality

Time differentiation
Frequency differentiation
Integration

Time shifting

Frequency shifting
Madulation

Periodic signals
Symmetry

Convolution in time
Windowing/multiplication
Cosine transform

Sine transform

Time Domain

x(t), y(t), z(t), , B
ax(t) + By(t)
xot), @ £ 0
x(—t)

E, = [ Ix()|2dt
X(t)

%ﬁj, n = 1, integer
—jtx(t)

[ x(t)Hdt'

Xt —a)

e*20ty (1)

x(t) cos(£2:1)

x(t) = ¥ Xpelt !
x(t) real

z(t) = [x* y](1)
x(t)y(t)

x(f) even

x(t) odd

Frequency Domain

X(Q), Y(2), Z(£2)
aX(2) + BY()
mX(2)

X(—8)
E, =+

2mx(—L2)

(JE2Y"X(2)

dA ()
da

A+ 1X(0)5(2)

e X Q)

X(Q — Q)

0.5[X(Q2 — Qo) + X(Q2 + Q)]
X(Q) = Y, 2nX,8(Q2 — kS20)
1X(R2)| = [X(—£2)]

ZX(Q) = —ZX(—Q)

Z(Q) = X(QY(Q)

=X #Y](Q)

X(Q) = [%, x(t) cos(Qu)dt, real
X(Q) = —j [%, x(t) sin(Qo)dt, imaginary

o IX()2dQ




Problem Assignments

« Problems: 5.4, 5.5, 5.6, 5.18, 5.20, 5.23

« Partial Solutions available from the student section of
the textbook web site



