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Introduction to Simulation  

 Simulating the process can be useful as a validation of 
a model or a comparison of two different models 

 If we have reason to trust our model, then simulation 
can further be used to explore how interventions in 
the model might affect its behavior 

 Simulations are also useful if the long-term behavior 
of the model is hard to analyze by first principles.  

 In such cases, we can look at how a model evolves and watch 
for particularly interesting but unexpected properties 
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Random Number Generation  
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 It may seem perverse to use a computer, that most 
precise and deterministic of all machines conceived by 
the human mind, to produce “random” numbers  

 More than perverse, it may seem to be a conceptual 
impossibility. 

 After all, any program produces output that is entirely 
predictable, hence not truly “random” 

 One sometimes hears computer-generated sequences 
termed pseudo-random, while the word random is 
reserved for the output of an intrinsically random 
physical process 



Random Number Generation  
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 A working definition of randomness in the context 
of computer-generated sequences is to say that 
the deterministic program that produces a 
random sequence should be different from, and — 
in all measurable respects — statistically 
uncorrelated with, the computer program that 
uses its output 
 pragmatic point of view is thus that randomness is in 

the eye of the beholder 

 What is random enough for one application may not be 
random enough for another. 



Uniform Deviates 
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 Uniform deviates are just random numbers that lie 
within a specified range, typically 0.0 to 1.0 for 
floating-point numbers, or 0 to (232-1) or (264-1) for 
integers 

 Within the range, any number is just as likely as any other 

 New high-performance methods are now available 

 Expect to get “perfect” deviates in no more than a dozen 
or so arithmetic or logical operations per deviate, and 
fast, “good enough” deviates in many fewer operations 
than that 



Uniform Deviates 
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 Many out-of-date and inferior methods remain in 
general use 
 Never use a generator principally based on a linear 

congruential generator (LCG) or a multiplicative linear 
congruential generator (MLCG) 

 Never use a generator with a period less than  264, or any 
generator whose period is undisclosed 

 Never use a generator that warns against using its low-order 
bits as being completely random.  
 That was good advice once, but it now indicates an obsolete algorithm 

(usually a LCG). 

 Never use the built-in generators in the C and C++ languages, 
especially rand and srand 
 These have no standard implementation and are often badly flawed. 



Uniform Deviates 
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 Indications that a generator is “over-engineered”, and 
therefore wasteful of resources: 
 Avoid generators that take more than (say) two dozen arithmetic or 

logical operations to generate a 64-bit integer or double precision 
floating result 

 Avoid using generators (over-)designed for serious cryptographic 
use 

 Avoid using generators with period > 10100. You really will never 
need it, and, above some minimum bound, the period of a generator 
has little to do with its quality 

 An acceptable random generator must combine at least 
two (ideally, unrelated) methods. The methods combined 
should evolve independently and share no state. The 
combination should be by simple operations that do not 
produce results less random than their operands. 



Uniform Deviates: History 
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 Recurrence relation: 

 

 

 Here m is called the modulus, a is a positive integer 
called the multiplier, and c (which may be zero) is 
nonnegative integer called the increment. 

 For c≠0, this equation is called a linear congruential 
generator (LCG) 

 When c ≠0, it is sometimes called a multiplicative LCG 
or MLCG 



Uniform Deviates 
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 LCG must eventually repeat itself, with a period 
that is obviously no greater than m 

 If m, a, and c are properly chosen, then the period will 
be of maximal length, i.e., of length m.  

 In that case, all possible integers between 0 and m-1 
occur at some point, so any initial “seed” choice of I0 is 
as good as any other 

 Ex: a=3, c=1, m=5, I0=1:  1,4,3,0,1,….. 



Uniform Deviates 
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 LCGs and MLCGs have additional weaknesses: 
When m is chosen as a power of 2 (e.g., RANDU), 
then the low-order bits generated are hardly 
random at all.  
 In particular, least significant bit has a period of at most 

2, the second at most 4, the third at most 8, and so on! 

 An elegant number-theoretical test of m and a, the 
spectral test, was developed to characterize the 
density of planes in arbitrary dimensional space 

 The field’s long preoccupation with LCGs was 
somewhat misguided!! 



Recommended Methods for Use in 

Combined Generators 
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 To be recommendable for use in a combined 
generator, we require a method to be understood 
theoretically to some degree, and to pass a 
reasonably broad suite of empirical tests 

 Diehard battery of statistical tests or NIST-STS test suite 

 



A) 64-bit Xorshift Method 
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 In just three XORs and three shifts (generally fast 
operations), it produces a full period of 264-1 on 
64 bits 

 



B) Multiply with Carry (MWC) with 

Base b=232 
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C) LCG Modulo 264 
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D) MLCG Modulo 264 
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E) MLCG with m≫232, m Prime 
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F) MLCG with m≫232, m Prime, and 

a(m-1)≈264 
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How to Construct Combined Generators 
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 The methods being combined should be independent 
of one another 

 The output of the combination generator should in no 
way perturb the independent evolution of the 
individual methods, nor should the operations 
effecting combination have any side effects 

 The methods should be combined by binary 
operations whose output is no less random than one 
input if the other input is held fixed.  
 For 32- or 64-bit unsigned arithmetic, this in practice means 

that only the + and ^ operators can be used.  
 Example of a forbidden operator: multiplication 



Examples of Combined Generator 
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 Combination and/or composition of four different 
generators. For the methods A1 and A3, the 
subscripts l and r denote whether a left- or right-
shift operation is done first. The period of Ran is 
the least common multiple of the periods of C3, 
A3, and B1. 

 Another Example:  



Assignments 

 Implement and compare the random number 
generators described in this part using the 
Diehard battery of tests 
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