
SIMULATION SYSTEMS

PART 1: RANDOM NUMBER

GENERATION

Prof. Yasser Mostafa Kadah

1

Introduction to Simulation

 Simulating the process can be useful as a validation of
a model or a comparison of two different models

 If we have reason to trust our model, then simulation
can further be used to explore how interventions in
the model might affect its behavior

 Simulations are also useful if the long-term behavior
of the model is hard to analyze by first principles.

 In such cases, we can look at how a model evolves and watch
for particularly interesting but unexpected properties

2

Random Number Generation
3

 It may seem perverse to use a computer, that most
precise and deterministic of all machines conceived by
the human mind, to produce “random” numbers

 More than perverse, it may seem to be a conceptual
impossibility.

 After all, any program produces output that is entirely
predictable, hence not truly “random”

 One sometimes hears computer-generated sequences
termed pseudo-random, while the word random is
reserved for the output of an intrinsically random
physical process

Random Number Generation
4

 A working definition of randomness in the context
of computer-generated sequences is to say that
the deterministic program that produces a
random sequence should be different from, and —
in all measurable respects — statistically
uncorrelated with, the computer program that
uses its output
 pragmatic point of view is thus that randomness is in

the eye of the beholder

 What is random enough for one application may not be
random enough for another.

Uniform Deviates
5

 Uniform deviates are just random numbers that lie
within a specified range, typically 0.0 to 1.0 for
floating-point numbers, or 0 to (232-1) or (264-1) for
integers

 Within the range, any number is just as likely as any other

 New high-performance methods are now available

 Expect to get “perfect” deviates in no more than a dozen
or so arithmetic or logical operations per deviate, and
fast, “good enough” deviates in many fewer operations
than that

Uniform Deviates
6

 Many out-of-date and inferior methods remain in
general use
 Never use a generator principally based on a linear

congruential generator (LCG) or a multiplicative linear
congruential generator (MLCG)

 Never use a generator with a period less than 264, or any
generator whose period is undisclosed

 Never use a generator that warns against using its low-order
bits as being completely random.
 That was good advice once, but it now indicates an obsolete algorithm

(usually a LCG).

 Never use the built-in generators in the C and C++ languages,
especially rand and srand
 These have no standard implementation and are often badly flawed.

Uniform Deviates
7

 Indications that a generator is “over-engineered”, and
therefore wasteful of resources:
 Avoid generators that take more than (say) two dozen arithmetic or

logical operations to generate a 64-bit integer or double precision
floating result

 Avoid using generators (over-)designed for serious cryptographic
use

 Avoid using generators with period > 10100. You really will never
need it, and, above some minimum bound, the period of a generator
has little to do with its quality

 An acceptable random generator must combine at least
two (ideally, unrelated) methods. The methods combined
should evolve independently and share no state. The
combination should be by simple operations that do not
produce results less random than their operands.

Uniform Deviates: History
8

 Recurrence relation:

 Here m is called the modulus, a is a positive integer
called the multiplier, and c (which may be zero) is
nonnegative integer called the increment.

 For c≠0, this equation is called a linear congruential
generator (LCG)

 When c ≠0, it is sometimes called a multiplicative LCG
or MLCG

Uniform Deviates
9

 LCG must eventually repeat itself, with a period
that is obviously no greater than m

 If m, a, and c are properly chosen, then the period will
be of maximal length, i.e., of length m.

 In that case, all possible integers between 0 and m-1
occur at some point, so any initial “seed” choice of I0 is
as good as any other

 Ex: a=3, c=1, m=5, I0=1: 1,4,3,0,1,…..

Uniform Deviates
10

 LCGs and MLCGs have additional weaknesses:
When m is chosen as a power of 2 (e.g., RANDU),
then the low-order bits generated are hardly
random at all.
 In particular, least significant bit has a period of at most

2, the second at most 4, the third at most 8, and so on!

 An elegant number-theoretical test of m and a, the
spectral test, was developed to characterize the
density of planes in arbitrary dimensional space

 The field’s long preoccupation with LCGs was
somewhat misguided!!

Recommended Methods for Use in

Combined Generators
11

 To be recommendable for use in a combined
generator, we require a method to be understood
theoretically to some degree, and to pass a
reasonably broad suite of empirical tests

 Diehard battery of statistical tests or NIST-STS test suite

A) 64-bit Xorshift Method
12

 In just three XORs and three shifts (generally fast
operations), it produces a full period of 264-1 on
64 bits

B) Multiply with Carry (MWC) with

Base b=232

13

C) LCG Modulo 264

14

D) MLCG Modulo 264

15

E) MLCG with m≫232, m Prime
16

F) MLCG with m≫232, m Prime, and

a(m-1)≈264

17

How to Construct Combined Generators
18

 The methods being combined should be independent
of one another

 The output of the combination generator should in no
way perturb the independent evolution of the
individual methods, nor should the operations
effecting combination have any side effects

 The methods should be combined by binary
operations whose output is no less random than one
input if the other input is held fixed.
 For 32- or 64-bit unsigned arithmetic, this in practice means

that only the + and ^ operators can be used.
 Example of a forbidden operator: multiplication

Examples of Combined Generator
19

 Combination and/or composition of four different
generators. For the methods A1 and A3, the
subscripts l and r denote whether a left- or right-
shift operation is done first. The period of Ran is
the least common multiple of the periods of C3,
A3, and B1.

 Another Example:

Assignments

 Implement and compare the random number
generators described in this part using the
Diehard battery of tests

20

