SIMULATION SYSTEMS

TRANSFORMATION METHOD



Transformation Method

o Fundamental transformation law of probabilities

o If we sample a random variable from some density f(x),
then apply a function y(x) to x, the density g(y) of y will
be related to that of x by the following rule:
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o If we know how to sample from some continuous
density function f (x), we can use this
transformation to sample from some other
continuous density function g(y)




Transformation Method

I
o0 Let x~UJ[0,1]
dx o —
5= 90| = |x=| gdu=G(y) = |y=G ()
o We find the distribution G(y) by integrating the

desired density g(y), invert the distribution to get
G1, and apply this inverse distribution to x to gety
distributed according to g(y).
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Transformation Method: Example
I

o Sampling from an exponential distribution with
parameter A:
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0 Generate x~U[0,1] then use the above transformation



Transformation Method for Joint

Distributions
I

o Modified version of the fundamental
transformation law of probabilities:
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Transformation Method for Joint
Distributions

o Assuming each x; is an independent U[0,1], we can

sample for y;s if we can find a set of functions:
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Transformation Method for Joint
Distributions
S =
o This knowledge is not very helpful in figuring out
what the transformation functions practically

o Difficult to integrate many practical probability density
functions

o Difficult to invert multidimensional functions

o Still useful to give us a way to prove whether a
transformation will or will not work

o That is, take a guess and verify that it satisfies the



Box—Muller Method

S | —
o Technique for sampling normal variables

0 Desired: I 22 b l o—V3/2
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0 Separable: ¢g(y1,32) = g1(»1)92()2)
o Let x,~UJ[0,1] and x,~U[0,1], then the following
transformation can be used to do the job:

Yi(x1,x2) = \/—2 In x; cos(2nx7)

V2 (X1, x2) = \/—2 In x; sin(27x,),




Box—Muller Method: Verification
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Assignments

o0 Generate samples from a random variable of
exponential distribution with a parameter A=2
and verify the output using histograms.

o0 Generate samples from a 2D normal random
variable of unity standard deviations using Box-
Muller method.



