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MARKOV MODELS



Definition
=

o A Markov model is generally represented as a
graph containing a set of states represented as
nodes and a set of transitions with probabilities
represented by weighted edges.




Simulation of Markov Models

o We simulate a Markov model by starting at some
state and moving to successive neighboring states
by choosing randomly among neighbors according
to their labeled probabilities.

For example, if we start in state q,, then we would have
probability p, of moving to q,, p, of moving to q,, and
(1-p;-p,) of moving to q;. If we move to q,, then we have

probability p; of moving to q, and (1-p5) of moving to qs,
and so on. The result is a walk through the state set (e.g.,

ql;92;91; 92;93;q3;.. ).
Resulting sequence of states is called a
“Markov chain”




Markov Model Components

A
0 A state set Q={q; q,; ---; 9y}
0 A starting distribution Pr{q(0)=q,}= p;
Represented by a vector p
0 A set of transition probabilities:
Pr{q(n+1)=q; | q(n)=q;}= p;

Represented by a matrix P

This is the definition of the First Order Markov Model:
probability of entering each possible next state dependent
only on the current state



Higher Order Markov Models

s
0 k™ Order Markov Model:

Pr{q(n)=q;, | a(n-1)= q; .1y A(N-2)= G; (1.2, -+
q(n-K)=q; (.19} = Pij

o Probability of next state depends on previous Kk states

0 Note: Any k"-order Markov model can be transformed
into a first order Markov model by defining a new state

set Q'=QX (i.e., each state in Q’ is a set of k states in Q),

with current state in Q" being the last k states visited in

Q.

o Then a Markov chain in the k™-order model Q—q; q,; q3; q4; ---
—Dbecomes the chain {q; 95 ---; Qb {d2 Az - - -5 Qs {d35 A -
qi}; - in Q’

o Ignore higher-order Markov models when talking about theory



Time Evolution of Markov Models

o Although the behavior of Markov models is
random, it is also in some ways predictable

0 Suppose we have a two-state model: Q={q1l; q2},
with initial probabilities p, and p, and transition
probabilities p,4, P12 P>1, and p,,

o Step O: Pr{q(0) =q1}] Pl]

Priq(0) =q2} ] | p2
)=q1}] [ pipn + papa
)

=q2} |  Lpipi2 + pap2

[Pf*{'?(z) = *?1}] _ l(ﬁu‘?u + pap21) P + (pp12 + Pszz)Pm]
Priq(2) = q2} (p1p11 + pap21)pr2 + (pip1z2 -+ papaz) paa

(
o After 1 step: -PF{QE



Time Evolution of Markov Models

e
0 Matrix Notation:

!Pr{‘}(f‘F 1) = ql}]
Prig(i+ 1) = q2}

o ol

o Distribution after n steps:

s = | = [ oo x| b o] 2



Time Evolution: Example




Chapman—Kolmogorov Equations

0 Generalization of how the distribution of states of
a Markov model evolves over time

o0 Suppose we have a Markov model with |Q| states
where we define p;(n) to be the probability of

going from state i to state j in exactly n steps
0
1’}@; n-+m) Z;}m (1) ;};g n)

forall n > 0, m > 0, and any states / and ;.

That is, the probability of getting to state | from state i in (n+m) steps
is the sum over all possible intermediate states k of the probability of
getting from i to k in n steps, then from k to j in the remaining m steps




Stationary Distributions

10
0 Look at the evolution of Markov model over really
long time sc_ale_for previous example:

2 24 [ 268 | [ 33333 | [ 33333 |
3] = |29 — | 285 | — .. — 1 .33333 | — | .33333
3 47 447 33333 33333

Conve;‘genc_e on a sir_lgle }_)robabiliti/ distribution that
will not change on further multiplication

Always converge to the same final distribution vector,
regardless of our starting point (initial distribution)

This vector on which the state distribution converges after
a large number of steps is called the stationary distribution




Stationary Distributions
S

o Will this property of convergence on a unique
stationary distribution regardless of starting point
work for any example?

o Answer is NO. It is possible that final vector is not unique!

o Example:
Start Final
] ] 0] 0
8 0 0 | )1
P=|.1 10 0 0
10 1 o T




Stationary Distributions
e

o A Markov model is not even guaranteed to

converge on any vector

o Example:

[

Initial Probability

[



Ergodicity
B

0 Ergodicity means that for any two states q; and g;
there is some sequence of transitions with nonzero
probability that go from g to g

o Ergodic Markov chain is also sometimes called irreducible

o Examplel Example 2 Example 3
R | S 0 0 0 1
19 0 110 Do
10 9 101
Ergodic Not Ergodic Not Ergodic

¥ ¥ N
Unique No Unique No

Stationary Distribution Stationary Distribution Stationary Distribution



Eigenvalues and Stationary Distribution

o Markov model will converge to a unique
stationary distribution if its transition matrix has
exactly one eigenvector with eigenvalue A,=1 and
has |A,| <1 for every other eigenvector

o Similar to Power Method of computing maximum
eigenvalue and its corresponding eigenvector

o Converges to this eigenvector after all eigenvalues die
out after k-iterations: A.*= 1 (i=1) or 0 (otherwise)



Eigenvalues and Stationary Distribution

o If a Markov model is not ergodic, then its state set
can be partitioned into discrete graph components
unreachable from one another

Each such component will have its own eigenvector with
eigenvalue 1

Depending on which component we start in, we may
converge on any of them

o Example: Nonergodic Markov model 2

(8 0 0] 0 0
d 1 0 |:> | and () | Are both eigenvector with eigenvalue=1

A0 1 0 1




Test of Markov Model Convergence

o A Markov model is guaranteed to converge on a
stationary distribution if there exists some integer
N > 0 such that,

min pi(N) =0, o0 > 0.
I]JI

o That is, there is some number of steps N such that no
matter where we start, we have some bounded nonzero
probability of getting to any given ending position in
exactly N steps.



Mixing Time
=e. 000
0 Informally, the mixing time is the time needed for

the Markov model to get close to its stationary
distribution

o if we want to run the model long enough for the
transients to die away by some factor r, then we
need to run for a number of rounds k such that,

o Assume A,=1and || < 1,i#1 a|* =

klog /s =logr

o — log r

~log 4y




Assignments
i

o For each of the following models:

Determine whether the following Markov models have
stationary distributions

Estimate stationary distributions (if available)

Compare Stationary distributions to eigenvector
corresponding to maximum eigenvalue (if available)

Estimate mixing time for transients to die out by a factor

of 1/100
1 0.2 0.1]
P,=lo 06 02| p= [8'2 g'g
0 0.2 0.7 ' '
Assume initial state of q; 1 0 0]
for all models P,=10 0.8 0.3 P, = [(1) (1)
0 0.2 0.7




