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Definition 

 A Markov model is generally represented as a 
graph containing a set of states represented as 
nodes and a set of transitions with probabilities 
represented by weighted edges. 
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Simulation of Markov Models 
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 We simulate a Markov model by starting at some 
state and moving to successive neighboring states 
by choosing randomly among neighbors according 
to their labeled probabilities.  
 For example, if we start in state q4, then we would have 

probability p1 of moving to q1, p2 of moving to q2, and 
(1-p1-p2) of moving to q3. If we move to q2, then we have 
probability p3 of moving to q1 and (1-p3) of moving to q3, 
and so on. The result is a walk through the state set (e.g., 
q1; q2; q1;  q2; q3; q3; . . .). 

 Resulting sequence of states is called a  

    “Markov chain” 



Markov Model Components 
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 A state set Q={q1; q2; . . . ; qn} 

 A starting distribution Pr{q(0)=qi}= pi  

 Represented by a vector 𝑝  

 A set of transition probabilities:  

 Pr{q(n+1)=qj | q(n)=qi}= pij  

 Represented by a matrix P 

 
This is the definition of  the First Order Markov Model: 

probability of  entering each possible next state dependent  

only on the current state 



Higher Order Markov Models 
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 kth Order Markov Model: 

 Pr{q(n)= qi,n | q(n-1)= qi,(n-1), q(n-2)= qi,(n-2), … , 
            q(n-k)=qi,(n-k)}= pi,j 

 Probability of next state depends on previous k states 

 Note: Any kth-order Markov model can be transformed 
into a first order Markov model by defining a new state 
set Q’=Qk (i.e., each state in Q’ is a set of k states in Q), 
with current state in Q’ being the last k states visited in 
Q. 
 Then a Markov chain in the kth-order model Q—q1; q2; q3; q4; … 

—becomes the chain {q1; q2; . . . ; qk}; {q2; q3; . . . ; qk}; {q3; q4; … ; 
qk}; … in Q’ 

 Ignore higher-order Markov models when talking about theory 



Time Evolution of Markov Models 
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 Although the behavior of Markov models is 
random, it is also in some ways predictable 

 Suppose we have a two-state model: Q={q1; q2}, 
with initial probabilities p1 and p2 and transition 
probabilities p11, p12, p21, and p22 

 Step 0: 

 

 After 1 step: 



Time Evolution of Markov Models 
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 Matrix Notation: 

 

 

 Distribution after n steps: 



Time Evolution: Example 
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Time 0 

Time 1 Time 2 

Time n 



Chapman–Kolmogorov Equations 
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 Generalization of how the distribution of states of 
a Markov model evolves over time 

 Suppose we have a Markov model with |Q| states 
where we define pij(n) to be the probability of 
going from state i to state j in exactly n steps 

That is, the probability of getting to state j from state i in (n+m) steps 

is the sum over all possible intermediate states k of the probability of 

getting from i to k in n steps, then from k to j in the remaining m steps 



Stationary Distributions 
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 Look at the evolution of Markov model over really 
long time scale for previous example: 

 

 

 Convergence on a single probability distribution that 
will not change on further multiplication 

 Always converge to the same final distribution vector, 
regardless of our starting point (initial distribution) 

This vector on which the state distribution converges after  

a large number of steps is called the stationary distribution 



Stationary Distributions 
11 

 Will this property of convergence on a unique 
stationary distribution regardless of starting point 
work for any example? 

 Answer is NO. It is possible that final vector is not unique! 

 Example: 
Start Final 



Stationary Distributions 
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 A Markov model is not even guaranteed to 
converge on any vector 

 Example: 

P= 

Initial Probability 



Ergodicity 
13 

 Ergodicity means that for any two states qi and qj 
there is some sequence of transitions with nonzero 
probability that go from qi to qj   

 Ergodic Markov chain is also sometimes called irreducible 

 Example1  Example 2  Example 3 

Ergodic Not Ergodic Not Ergodic 

Unique  

Stationary Distribution 

No Unique  

Stationary Distribution 

No 

Stationary Distribution 



Eigenvalues and Stationary Distribution 
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 Markov model will converge to a unique 
stationary distribution if its transition matrix has 
exactly one eigenvector with eigenvalue 1=1 and 
has |i| < 1 for every other eigenvector 

 Similar to Power Method of computing maximum 
eigenvalue and its corresponding eigenvector 

 Converges to this eigenvector after all eigenvalues die 
out after k-iterations: i

k= 1 (i=1) or 0 (otherwise)  



Eigenvalues and Stationary Distribution 
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 If a Markov model is not ergodic, then its state set 
can be partitioned into discrete graph components 
unreachable from one another 

 Each such component will have its own eigenvector with 
eigenvalue 1 

 Depending on which component we start in, we may 
converge on any of them 

 Example: Nonergodic Markov model 2  

Are both eigenvector with eigenvalue=1 



Test of Markov Model Convergence 
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 A Markov model is guaranteed to converge on a 
stationary distribution if there exists some integer 
N > 0 such that, 

 

 

 That is, there is some number of steps N such that no 
matter where we start, we have some bounded nonzero 
probability of getting to any given ending position in 
exactly N steps. 



Mixing Time 
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 Informally, the mixing time is the time needed for 
the Markov model to get close to its stationary 
distribution 

 if we want to run the model long enough for the 
transients to die away by some factor r, then we 
need to run for a number of rounds k such that, 

 Assume 1=1 and |i| < 1, i≠1 



Assignments 

 For each of the following models: 

 Determine whether the following Markov models have 
stationary distributions  

 Estimate stationary distributions (if available) 

 Compare Stationary distributions to eigenvector 
corresponding to maximum eigenvalue (if available) 

 Estimate mixing time for transients to die out by a factor 
of 1/100 
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𝑃1 =
1 0.2 0.1
0 0.6 0.2
0 0.2 0.7

 𝑃3 =
0.6 0.4
0.4 0.6

 

𝑃4 =
1 0
0 1

 𝑃2 =
1 0 0
0 0.8 0.3
0 0.2 0.7

 

Assume initial state of q1 

for all models 


